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This document is the Final Report submitted by the Martin Marietta
Corporation, Denver Division, under Contract NAS8-29670.

This study was performed for the National Aeronautics and Space
Administrations George C. Marshall Space Flight Center under the
technical direction of the Astronautics Laboratory, Thermal En-
gineering Branch, with Mr. Jack D. Loose serving as Technical
Monitor. The work described herein was performed from 1 July 1973
to 30 April 1974.

The work of the following major contributors to the study is
acknowledged: J. Michael Connolly and Solomon H. Eichenbaum.
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INTRODUCTION AND SUMMARY

The introduction of a full capability Tug into the Shuttle mission
spectrum in the 1980s will significantly broaden Shuttle's capa-
bility. To fully realize that capability it will be essential
that the Tug be designed to perform its mission within a broad
range of thermal environments with currently planned mission dura-
tions up to 7 days. The primary objective of this study was to
develop a thermal design for the forward and intertank compart-
ments and fuel cell heat rejection system that satisfy Tug re-
quirements for low inclination geoschynronous deploy and retrieve
missions. Key to this design was to evolve to a system that was
reusable and minimized ground refurbishment requirements. Figure
1-1 presents baseline Tug cenfiguration used in the study.

Passive concepts were demonstrated analytically for both the for-
ward and intertank compartments. Each compartment used an exter—

_nal paint pattern tailored to the mission environments., The for-

ward compartment, which contains the majority of the avionices
equipment, was thermally designed with circumferential heat pipes
to reduce the wide variance of skin temperatures resulting from
constant attitudes. 1In addition, the forward shield (beta cloth)
was modified to include a multilayered insulation blanket. Re- -
sults indicated that the equipment used for rendezvous and docking,
such as the television, laser radar, and its associated electronics,
present one of the more severe thermal control problems. The most
promising solutlon appears to be to mount the equipment on the
thermal conditioning panels. The panels can be used to reduce
heater power requirements. The fuel cell electrical power sub-
system required an active heat rejection concept Iin the form of

a pumped fluld radiator. Continued development of heat pipe ra-
diators could result in their future application to thermal con-~
trol of the fuel cell.

- Worgt—-case external heating environments were determined and used

in the study. All mission phases were incorporated into study
with the most significant one beilng the heating of the Tug in the
orbiter after reentry and landing. Carge bay purging was found
to be required to maintain both operating and nonoperating equip-
ment temperature limits. '

A series of three catalogues were created to provide representative
equipment datd for use in the thermal study. Internal distribution
of the catalogues resulted in a rather wide acceptance and a desire
for additional categories of information to expand their usefulness.



Key thermal control systems derived in the study were carried an
additional step to preliminary sets of design and performance
specifications. Three specifications were developed covering the
forward compartment thermal design, battery louvers, and fuel cell
heat rejection system.

A follow-on plan was developed highlighting breadboard testing of
the above key areas which were advanced to the preliminary spec-
ification phase. Tests alsc jnclude a honeycomb conductivity
test. In addition, several areas of analytical concern were iden-
tified that were beyond the original scope of the study.
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EQUIPMENT THERMAL REQUIREMENTS, CHARACTERISTICS AND CONSTRAINTS
CATALOGUES : ’

New spacecraft designs generally start with studies oriented to-
ward satisfying mission requirements. Systems-level studies of
this nature generally result in identifying performance require-
mentsg, allowable system weights, power budgets, etc. New equip-
ment (or revised existing equipment) designed to satisfy specific
requirements 1s inherent in each new spacecraft. After scme

basic studies are completed the thermal designer translates the
preliminary design one step further to evolve the design into
thermal environments and anticipated equipment temperatures. Often
the thermal designer is faced with new equipment and associated
thermal data are lacking. To avoid this problem, this study began
by identifying the thermal requirements, characterlstlcs, and con-—
straints of candidate equipment 1tems

The approach chosen to identify, handle, and document these data
was to develop a generallzed data bank containing thermal and gen-
eral information for each component catalogued. The data bank
was written to be dynamic in nature, allowing components to be
added or deleted without affecting output of other components.

A FORTRAN IV program containing feur major subroutines was written
to compile two catalogues using the data bank data as input data.
The two catalogues contain equipment thermal requirements, and
equipment physical characteristics and constraints, respectively.
The data bank, catalogues, and a catalogue user's guide were pub-
lished in two documents, (Ref 1 and 2).

The program and data bank provide the user a means of cataloging
components for potential applicatior to Tug or any other spacecraft
in a standardized manner, while maintaining visibility to the’
source of the information. The data bank was organized by major
system (such as the Avienics System), describing each subsystem
followed by the components included within each subsystem. Table
2-1 describes the data that were catalogued and the reference used
in identifying the subsystem descriptive information. Table 2-2
describes the subsystems included within the Avionics System, while
Table 2-3 expands upon the Guidance Navigation and Control Subsys-
tem describing the types of equipment, requirements, timelines,

and notes. Table 2-4 presents the first component catalogued and
shows the generalized and standard format used in cataloging all
components. '



TABLE 21

SPACE TUG EQUIPMENT DATA BANK

THE SPACE TuG EQUIPMENT DATA BANK HAS BEEN PREPARED
FOR NASA/MSFC UNDER CONTRACT NUMBER NAS 8~29670,

THIS DOCUMENT CONTAINS THE RAW DATA oF ALL EWUIPMENT
ITEMS IDENTIFIED FOR POTENTIAL APPLICATION TO THE
SPACE TUG SYSTEM, ‘

THE FOL{LOWING DATA IS INCLUDED IN THIS OOCUMENT
EQUIPMENT THERMAL REQUIREMENTS
EQUIPMENT PHYSICAL CHARACTERISTICS

EQUIPMENT CONSTRAINTS

THIS DOCUMENT WAS PREPARED 8Y THE MARTIN MARIETTA
AEROSPACE CORPORATION AND WAS SUBMITTED TO NASA/ .
MSFC ON 1 MAY 1974,

QUESTIONS CONCERNING THE DATA CONTAINED MEREIM
SHOULD BE DIRECTED TO

MR, TERRY L, WARD

PHONE 303=T7T94~5211

EXTENSION 4702

THE SYSTEMS AND SUBSYSTEMS DESCRIBED HEREIN ARE DEFINED
BY AND IN ACCORDANCE WITH
BASELINE TUG DEFINITION DOCUMENT
REVISION A
DATED JUNE 26+ 1972
RELEASED 8Y
PRELIMINARY DESIGN OFFICE
PROGRAM DEVE|LOPMENT
GEORGE C, MARSHALL SPACE FLIGHT CENTER
NATTIONAL AERONAUTICS AND SPACE ADMINSTRATION
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TABLE 2-2

AVIONICS SYSTEM
.22 2 X 23 X X128 2 3

THE DATA CONTAINED IN THE AVIONICS SYSTEM SECTION RRETAINS TO
THOSE CANDIDATE EQUIPMENT ITEMS WHICH HAVE BEEN IDENTIFIED FOR
APPLICATION TO THE FOLLOWING SUBSYSTEMS

GUIDANCEs NAVIGATION AND CONTROL
DATA MANAGEMENT

COMMUNICATIONS

INSTRUMENTATION

ELECTRICAL POWER

2-3



TABLE 2-3

GUIDANCE MAVIGATION aND CONTROL SUBSYSTEWM
BOBRROVHDOGHURLAHROREIVCRODHSORERRS ARG ERD
POBAHCORON I NECO0BDILERENO0R0D0RENANDRABRIROCOOBABDRRLAIVEOSNCNRONORRNOS

EQUIPHENT QUANTITY WEIGHT POLER REMARKS ®
ITEM ¢ 1 ¢
(POUNDS) (HATTS) ' ob 2e
a 3 o
&
(EARTH) v
ﬂa&@ﬁ@@ée@GG%GG&&&GG@G@@956@@&%6&@&&&@#&@@@#&%@#ﬁﬁ@ﬁﬁﬁﬂﬁﬁﬁﬁﬁ*bﬂwwbwﬁuoﬁ
MU 2 80, 40, MOUNMTED AT POSITION 1 WITH
STaR TRACKER,
STAR TRACKER 2 50, 180 POSETION 1
ELECTRONICS 2 26, .
HORIZON SCANNER 2 0, 380 POSITION 3» POSSIBLY
ELECTRONICS 2 10, DEPLOYED,
LASER RADAR (&) 2 0, 185, POSTTION 29 H/3 POSE{TION
ELECTRONICS (A) 2 20, MIRROR YAG
TELEYISION tay 2 20, 10¢ PQASITION 2¢ FORWARD LOOKING
o ZOOMs ONE GIMBAL.
ACE ELECTROMICS 2 28, 18.5
SUN SEMSOR 2 0.8 0.0 MOUNMTED ON EXTERIOR AT
POSITION 2 AND 4
ToTaLs 37z.a 2795

EETETEELE TP L LS P S 21 3 T - 3ol A DR T Lo X g LR R LA LB L LT LY -1 YY)

MOTES {4) INMCLUDED IM RENDEZYOUS AND DOCKING CATEGORY OF MASS
PROPERTIES,
HEOBERERNEOOIN RO ADERDENOFOILLEREOORAROORGBITIGISRERIROARIRERARLENEORECHSS

TIMELINES

CONTINUOUS OPERATION
My
ACS

HORIZON SCANNER®

$TaR TRACKER ®

SUN SENSOR o
15,31 7o 16,06, 18,45 T0 19,200 23.40 T0 24,25
36,060 TO 373350 60,60 TO 61,35 B2.28 T0 83,03
87¢56 TO DB.2%; 90,59 7O 9l.34

LASER RADAR @ 50,35 TD B1,33

TELEVISION @ 60,85 YO 81,25

AUTOCOLL IMATOR waS EXCLUDED FROM CATALOG SINCE IT APPEARS THAT HORIZOW
SCANNER CAN BE ATVACRED DIRECTLY TO IMU THERE BY AVOIDING THE NEED FOR
THE AUTOCOLL IMATOR.

RATE GYROS WHERE IMCLUDED 1N CATALOG HOWEVER NO FIRM REQUIREMENT HAS
BEEN ESTABLISHED,



TABLE 2-4

: SPACE TUG EQUIPMENT DATA BANK Raw DATA
THERMAL REQUIREMENTSs PHYSICAL CHARACTERISTICS» AND CONSTRAINTS
AVIONICS SYSTEM .
GUIDANCE NAVIGATION AND CONTROL SUBSYSTEM
#BdRalsssatehddalnaglodpantaddngasaanpiotanas

IMU 1 CARQUSEL 5B DELCO FLECTRONICS P/N T886091-011
DESIGN OPERATING CASE TEMPERATURE 6t. TO 115, DEG, F
NON=OPERATING AND STORAGE CASE TEMPERATURE =35, TO 160, DEG. F
ACCERTANCE TEST TEMPERATURE REQUIREMENTS 57« T0 115, DEG, F
QUAL IFTCATION TEST TEMPERATURE REQUIREMENTS S6s TO 118, DEG, F
PACKAGE SHAPE RECTANGULAR
PACKAGE SIZE ®* LENGTH 227 ® WIDTH 1l. & HEIGWNT 12, {INCHES)
CASE MATERIAL ALUMINTIUM ;
CASE WEIGHT 20« POUNDS
TOTAL WEIGHT 80, POUNDS
SURFACE PROPERTIES ALPHA = 0,900 # EMISSIVITY = 0,900

INPUT STEADY STATE POWER 95, WATTS &« .
2l. AT 75, DEGy 9%, AT ~B0, DEG (WATTS AT DEGs FAHRENHELIT)
QUTPUT POWER 0, WATTS &% MILLI-WATT OUTPUT
THERMAL DESIGN : ACTIVE & PASSIVE
BTGB SR ARG G B EGRBE B H AP H RIS ORGSR EOIH UGN E SRR OSSN OGS
PHYSICAL CHARACTERISTIGCS AND CDNSTRAINTS REMARKS
NON MISSION ON-TIMES #PRELAUNCH YES® ASCENT YES® REENTRY OFF
MISSIQON ON-TIMES # SHUT/TUG ON# TUB/ORBIT ONe TUG/PAY ON
MARRIED WITH MAGIC 352 COMPUTER
MOUNT WITH Z=aXIS ALONG LONGITUDNIAL AXIS
MAX CABLFE LENGTH 1.8 METERS (6,0 FEET)
QUALIFTIED FOR 9 HOUR MISSION
OPERATIONAL IN 8 HOURS
LASZE R R RS LR YL FE YL R YL Y YR LYY L ALY T Y )
THE CAROUSEL 5A IMU IS DESIGNED AND BUILT RY
DELCO ELECTRONICS DIVISION OF GENERAL MOTORS CORPORATION
6767 HOLISTER AVE, GOLTA, CALIFORNIA 93017
THE DATA CONTAINED HEREIN WAS NBTAINED FROM g
MH, BILL CATTOI PHONE 805-968=1011 EXTENSION 623
THIS IMU IS CURRENTLY IN A PRODUCTION PHASE AND IS BEING
PROCURED BY SAMS0 FOR USE ON THE TITAN 3C TRANSTAGE AS THE SINGLE
GUIDANCE SENSOR FOR THIS SYSTEM IT IS MARRIED TO THE MAGIC 152
COMPUTER ALSO RUILT BY DELCO AND SUPPLIED AS A TWO PACKAGE SYSTEM,
THE IMU IS A 4 GIMBAL SYSTEM AND 15 QUALIFIED FOR A 9 HOUR MISSION
THIS IMU IS SCHEDULED TO FLY FOR THE FIRST TIME IN 1973, A SINGLE
28 VDC SOURCE 1S REQUIRED INTERCONNECTING CABLE WITH THE COMPUTER
IS LIMITED TO Ll,8 M ( 6 FT), THE GIMBAL SET IS INTERNALLY SHOCK
MOUNTED, THE CASE 1s PHESSURIZED To 11.7 N/CM 5Q (17 PSIA) AND THE
UNIT 1S DESIGNED WITH aN INTERNAL ACTIVE THERMA{ CONTROL S5YSTEM
COMPRISED OF A FAN AND THERMOSTATICLY CONTROLLED HEATERS,., THE UNIT
1S DESIGNED TO FUNCTION WITHIN A MAXIMUM POWER BUGET OF 205 WATTS,
APPROXIMATELY 8 HOURS ARE REQUIRED FROM POWER ON TO GO-INERTIAL,

REF, BROCHUREs UNIVERSAL SPACE GUIDANCE SYSTEMs DELCO ELECTRONICS
ALEL LA LR R A A T T A T LI P P ER TR Y S 2L EL L L T YN T e



Each component was catalogued in raw data form, identifying the
appropriate system and subsystem. Freprinted keypunch sheets were
used to reduce the amount of information to be written and cor-
respondingly prepunched cards were used to reduce the key-punch
task. This also limited the number of errors found in the review
and editing of each component data sheet. One additional means

of reducing errors was also applied. The data were assembled in
the familiar set units and the program was used to convert the
data to the International Units as shown in Table 2-5, the final
data form.

Three major blocks of information were set aside for describing
each componeat as shown separated by asterisk limes. The first
block describes the component identifier (used by the program),
name, manufacture, and part number. The remaining data in this
block describe pertinent thermal design information of the com-
ponent. Operating, nonoperating, and test box temperature limits
are presented. The box shape and size, case material, and weights
are specified. The exterior surface radiation properties, input
power, variable power, and output power are presented. The last
item describes the basic box thermal design for ground and flight
operations. The word "active" to the left of the asterisk refers
to a need of forced air cooling or a fluid loop on the ground, while
"passive' refers to no special considerations required. The word
“"active' to the right of the asterisk refers to the need of special
considerations in flight such as a fluid loop or other means beyond
the mounting conduction and radiation capability of the bex.

The second block of data centains information relative to the re-
quired on-times during the mission and pertinent characteristics

and constraints remarks. The prelaunch, ascent, and reentry periocds
of flight were described as nonmission periceds of flight because

the Tug is attached to the Shuttle during these pericds.

The third data block was set aside as a general narrative block
to further identify the manufacturer, source of the material,
expand the description of the component, development status, etc.

The first twe data blocks were used by the program teo build the
two catalogues regquired by contract. The first catalogue, the
Equipment Thermal Requirements (atalogue, is a summary of the

data bank information in terms of allowable component temperatures
as they relate to the various Tug mission phases. This summary
was organized by subsystem and type of component as shown in Table
2-6. 1In addition, the thermal design and power dissipation are

also presented. '"Yes' was used to indicate that the component
is on during mission phases while the Tug is attached to Shuttle,
but not reguired to satisfy Tug mission requirements. 'Int'" in-

dicates an intermittant usage during the mission.

2-6



TABLE 25

SPACE TUG EQUIPMENT DATA BANK FINAL DATA
THERMAL REQUIREMENTSs FHYSICAL CHARACTERISTICSy AND CONSTRAINTS
AVIONICS SYSTEM
GUIDANCE NAVIGATION AND CONTROL SUBSYSTEM
ﬁb&ﬁ#ﬂﬂ&bﬁ#ﬂ}ﬂl#####ﬂGD#“HG“O#GG#%GGG#!'G##G*
[MU )} CAROUSEL D& DELCO FLECTRONICS P/N 7886091011
DESIGN OPERATING CASE TEMPERATURE 289, T0 319, DEG. K
( 60, TO 115, DEG, F}
NON-OPERATING AND STORAGE CASE TEMPERATURE 236, TO 344, DEG, K
{ =35, TO 160, DEG, F)
ACCEPTANCE TEST TEMPERATURE REQUIREMENTS 287« TO 319+ DEG, K
{ 57+ TO 11%, DEG, F}
QUALIFICATION YEST TEMPERATURE REQUIREMENTS 26e, TO 321, DEG, K
. { 56. TO 11B. DEG,. F)
PACKAGE SHAPE RECTANGULAR _ .
PACKAGE SIZE * LENGTH S57.7 & WIDTH £€7.9 # HEIGHT 30,5 CENTIMETERS
LENGTH 2247 # WIDTH 11,0 # REIGHT 12,0 INCHES

PACKAGE AREA B440,0 5@, CENTIMETERS # 1308,2 5@, INCHES
PACKAGE VOLUME 49102.2 CU, CENTIMETERS ® 2996.4 CU, INCHES
CASE MATERTAL ALUMENTUM

CASE WEIGHT 9.1 KILOGRAMS # 20,0 POUNDS

TOTAL WEIGHT 3643 KILOGRAMS & B8040 POUNDS

SURFACE PROPERTIES ALPHA = 0,900 #» EMISSIVITY = 0,900

INPUT STEADY STATE POWER 95, WATTS ##
21.0 AT 297. DEGy 94,0 AT 211, DEG (WATTS AT DEG, KELVIN)
21.0 AT 75. DEGs 94o.0 AT =80, DEG (WATTS AT DEG. FAHRENHEIT)
QUTPUT POWER G, WATTS #% MILLI'NATT oUTPUT
THERMAL DESIGN ACTIVE @ PASSIVE
Y TSy Y Yy I ST T2 Y22 XA 220 222 2 LA B 2 02t byl g oty tyy Xy L)
PHYSICAL CHARACTERISTICS AND CONSTRAINTS REMARKS
NON MISSION ON~TIMES #PRELAUNCH YES* ASCENT YESY REENTRY OFF
MISSION ON=TIMES © SHUT/TUG ON® TUG/ORBIT ON* TUG/PAY ON
MARRIED WITH MAGIC 352 COMPUTER
MOUNT WITH Z<AXIS ALONG LONGITUDNIAL AXIS
MAX CABLE LENGTH J,B METERS (6,0 FEET)
QUALIFIED FOR § HOUR MISSION
OPERATIONAL IN B HOURS
i'ﬁiﬁuﬁil&ﬂiﬂlﬂ#G!iﬁiﬁﬂlﬁ*ﬁlﬁ*#iﬂnﬂlﬂﬂ*lhiﬁﬁ#ﬁﬂ"&##&ﬁe!gi|¢|gguu*
THE CAROUSEL SB IMU 1S DESIGNED AND BUILT RY
DELCO ELECTRONICS DIVISION OF GENERAL MOTORS CORPORATION
6767 HOLISTER AVE, GOLTAs CALIFORNIA 93017
THE DATA CONTAINED MEREIN WAS OBTAINED FROM ‘
MR, BILL CATYDI PHONE 805-968=1011 EXTENSION 623
THIS MU IS CURRENTLY IN A PRODUCTION PHASE AND IS BEING
PHOCURED BY. SAMSG FOR USE ON THE TITAN 3C TRANSTAGE AS THE sxuaLs
BGUIDANCE SENSOR FOR THIS SYSTEM IT IS MARRIED TO THE MAGIC 352
COMPUTER ALSO BUILT BY DELCO AND SUPPLIED AS A TwO PACKAGE SYSTEM,
THE IMU IS A &% GIMPAL SYSTEM aND IS QUALIFIED-FOR A 9 HOUR MISSION
THIS IMU 1S SCHEDULED To FLY FOR THE FIAST TIME IN 1973. A SINGLE
28 VOC SOURCE 1S REWUIRED INTERCONNECTING CABLE wITH TME COMPUTER
1S LIMITED TO 1.8 M { & FT), THF GIMBAL SET IS INTERNALLY SHOCK
MOUNTED., THE CASE IS PRESSURIZED TO 11.7 N/CM 54 (17 PSTA) AND TRE
UNIT IS DESIGNED WITH AN INTERMAL ACTIVE THERMAL CONTROL SYSTEM -
COMPRISED OF A FAN AND THERMOSTATICLY CONTROLLED HEATERS, THE UNIT
15 DESIGNED TO FUNCTION WITHIN A MAXIMUM POWER BUGET OF 205 WATTS,
APPROXIMATELY B HDURS ANE REQUIRED FROM POWER ON TO GO=-INERTIAL.

. REF. BROCHUKEs UNIVERSAL SPACE GUIDANCE SYSTEM» DELCO ELECTRONICS



TABLE 2-6

T i L L o o Lt L Ly S o L b e T T R e M A M W R T e T S e U ey e e T A e e L T U R e e A ek

ST

ST

ST

ST

ST

ST

ST

ST

1

*

DESCRIPTION AND
MANUFACTURE

CT-401 SENSOR
33Rr

STAP TROZKER
HONFYHELL

M4OS
ITT GILFILLAN

5592 STAR TRACKER
EMR PHOTOFLECTRIC

57« STAR CAMERA
E¥P PHOTOELECTRIC

0AD STAR TRACKER
AENDIY CORPORATION

OMA ATM STAR TRKF,
BENDIX CORPORATICN

KS-~139 STAR TRKR
KOLLSHAM TNSTR,

GRIUNDS
OF3ITAL

PAISIVE
PASSIVE

PASSTYE
PASSIVE

PASSIVE
PASSTVE

PASSIVE
PASSTIVE

PASSIVE
PASSIVE

PASSTVYE
PASSIVE

PASSIVE
PASSIVE

PASSIVE
PASS TVE

EQUIPHMENT THERMAL REQUIREHEMTS CATALOGUE
GUIDANLE NAVIGATION AND SDONTROL SUBSYSTEH

EQUIPKFENY ITEM STAR TRACKERS

POHER MISQIUN PHASE THERMAL RFQUIREMENTS AND TEWPER&TJPr LIMITS

KATTS DEGRFES KEWVIM / (FAHRENHEIT) - HIN 7 MAX
KIN/ PRELAUNCH SHUTTLE MANEUVERS REENTRY
HAX CARRY SHUTTLE TUuG PAYLOAN AND
TUG ORATITAL TG LANDT NG
57 aFF QFF OFF oN oN DFF
5 2437333 2634333 243/333  203/333 2637333 243,333
(=22/140) {-2271600 (-22/140) (=227 03 (=227140) (-22/160)
3s OFF DFF OFF - INT T OFF
3 2557302 2657302 255/302 255/ 50 255/233  255/302
( Cf 85) { Q7 85) { 07 BS5) (-22/ 50) { O 500 ( 0/ &%)
20 ¥FS © DFF OFF oN JIN OFF
20 2¢3/323 289/323  208/323 293,323 293/323 288,323
U &28/122) 1 &0/122) { 60/122) t S37/127) ( 6B7122Y { 50/122)
k¥ " OFF OFF OFF INT a7 OFF
3 2187348 214/348  218/348  ?18/113  21B/318 218/ 3uE
[-67/467) (~E771B7) (-67/167) { 6B/113) (~6T7/L13) (~B7/167)
4v OFF OFF OFF INT ™Y DFF
4 Z1or3a3 2184343 24833 213/10&  216/313  218/343
(~E77158) (~B7/158) (-67/138) ( HB/10G) (=6T77104) [=B7/158)
6/ OFF OFF INT INT INT OFF
& - 238327 238/327 2387310 238/140 238/310  238/327
(-20/1393 (=30/430) (~307100) ( B8/100) {~30/100% (-30/130)
18/ oFF OFF OFF INT INT OFF
28 ?33/327 2337327  233/327 233/ 90 233I/305 233,327
t-6G/7130) (-40/4300 (-40713M) ¢ &8/ 90) (~40/ 30) {-ubG/130)
B/ oFF OFf OFF INT IN OFF
18 272/310 272,380 2727310 272/ 70 ave/3L0 0 2724310

f 307100 € 3071000 ¢ 30/7100F ¢ &8/ 78)  30/100) { 3071000

REMARKS

ON DURING
CHECKOQUT

ON DURIWG.

CHECKDUT

ON DURING
CHECKOUT

OM ODURING
CHECKOUT

ON QURING
CHFECKOUT

OM OURING
CHECKOUT

ON OURING
CHECKOUT

DN DURING
CHEGKROUY

PRE LAUMCH

PRELAUNCH

PRELAUNCH

PRE A UNCH

PRE L& UNCH

PRELAUNCH

PRELAUNCH

PRE LAUNGH

FOR

FOR

FOR

FOR

FORrR

FOR

FOR

FOR

9-Z2 379V



The second catalogue, Equipment Physical Characteristics and Con-
straints Catalogue, presents the thermal characteristics of the
components as derived from the data contained in the first data
bleck and constraints remarks from the second block. Surface area
and volume, power density, radiation time constant, adiabatic

rise rate, thermal mass, and allowable sink Eemperature are pre-
sented. The data are presented in International units and English
units. Some of the components were unable to meet their tempera-
ture limits in a 100% radiation environment, hence, the quantity
of heat required to be removed via conduction was calculated and
printed if the sink environment requirements were less than 0°K.
Within limits, the use or need of conduction to cool a cdmponent
is usually an open issue for the thermal designer. Hence, the re-
sults indicate emphasis to be placed on a given component and the
potential need for special considerations such as the use of heat
pipes, Table 2-7 presents an example of the catalogue,

The catalogues proved to be a valuable asset during the study.

We used various groups within the Denver Division to test the ap-
plicability of the data to other disciplines and projects and found
a general acceptance and desire for additional data to be included.
In general, the data in the catalogues were complete within the
intended scope, however, several areas for expansion are apparent.
For example, each component designer in the aerospace industry
compiles component information relative to the needs of his par-
ticular technical discipline, but it is rarely a complete compila-=
tion of information. The data bank approach could easily be expanded.
to include the functional characteristics and requirements of the
components tailored to meet specific component types and a complete
description of testing and test requirements. The resultant cata-
logues would be extremely useful to the aerospace industry and

would reduce the time required by those who attempt to maintain
component files while limiting the amount of misinformation that

is passed along by work of mouth. Follow-on work in this area

is desirable and appropriate with direct benefits to the government.
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TABLE 2.7

EOUIPFENT PHASTICAL CHARACTERISTICS AND CONSTRAINTS CATALOGUE
SUIOANCE MAVIGATTOM AND CONTROL SUSSYSTEM

EQUIPVMENT ITEM STAR TRAGKERS

D L ) W L e e o N A A R e TR R A R A R R MR A e L e o fmh v e = o o = —— - e  ——————  ——— - A

RFF. DESCRIPTICN HELGHT PACKAGE SURFALE vDLUME FRAD. POWER POHER TIME ADIABATIC THERMAL ALLDHABLE SINK QPERATION
MO, HMANUFACTURER ANC K5 SHARF ARER CU3IC ALPHA/ WATTS OENSITY CONST. RIST RATE MASS TERP, DEG K/(F} MODE
REMARKS (A3 SQUARE CH EMISS MIN/  Q/A HOURS (EG £/7HR W-HR/#K  DESIGN QAL
CH IFT} MAX W/ M2 HIN DEG F/ZHR BTU/F  HRIN M¥AX HIN HMAX
(FT} {W/FT2) MAx MIN MAK
ST & OAD STAR TRACGKEP Faeld RECT ~ 2377 3832 .70/ &/ 20/ 29 1.00 1 i 5.3 236 307 238 307 INT
AENDTIX CORPOPATIONT15.0) { 3.1} ( .35) .85 8 € 1/ 4y t.07 ? 2 2.0 =33 33 =33 g3

THE QAC-1IV STRAPDOWN STAR TRACKER HAS A PASSIVE THERMAL CONTRO.
HEAT IS REJECTED 2¥Y CONDUCTION TO A FAOTATION SHIELD HAVYING & PER-
MISSIALFE TEMPEFATURE EXCURSION OF -2¢ TG 38 DEG.CE-20 TQ 104 DEG
F¥. NO HEATERS ARE RSENUIRED WITHIMN THIS RANGE. UNIT IS HARD
MOUNTED 1O VEHICLE 4OUNTING FUANSE. UMIT REDUIPE CLEAR UNOBSTRACT-
“0 WIEA TO OPERATE PROPEPLY

ST 7 OMA ATM STAR TRKF, 19,1 RECT 11211 77677 «257 187 187 25 282 1 2 12.9 238 302 247 392 INT

BENDIX COFPORATIONILY L CB (12.1F (2.74) .90 26 ¢ 1/ 2y .bl 2 L] 6.8 -3D 8L ~14 8L

THE OHA ATM STAR TRACKER IS A GIMBALLED UNIT. THE ABQYT CIWMENSTIONS

ARF FATERIOR LIMITS SEE REF FOR MORE DETAIL DESCRIPTION. WUNIT IS

MARRIEND TQ ATM STAR TFACKER ELECTRONICS UNIT. UNIT HAS 3 INTERNAL

HEATERS NF 10 WATY¥S EACH TWO OF THE HEBTFRS HAJE SFET POINTS OF =23

03 VO ~15.0 {=%,9 T] 5.0 QEG.F) AND THE TYIRD HEATER HAS SET PQIN

OF =153 TO =607 DEZ; € (5.3 7O 22.5 0EG.FY. UNIT I3 THERMALLY IS0

LATED, PAINTED WHITE, AND HAS A SUPERINSULATION BLANKEY COVERING .

247 29¢ 226 307 INT

ST #® X5-199 STAR TRKF 2.1 RECT LB42 22184 .20/ 87 177 38 s 43
=14 62 =51 93

KOLLSMAN INSTR, 120.09 € 3.8 { .78) .75 18 ¢ 17 3} .2
THE KS-199 ST&R TRACKER WAS BUILT FOR THE YQ0L PROGRAM. INE ENGINE«

ERING MOPEL WAS BUILT AND FUNCTIONAL FESTEN., THE GIMAAL SENSOR IS

COUPLEN TO AN FLECTINNIC URIT. THE TRACKER HAS INTERNAL HEATERS
TOTALING -10 WATTS AND ARE SUED FOX FAST WARM UP WHEN UNIT IS BELOW

~11.8 DEG C{10 DEG. F). THE UNIT THERKAL DESIGN IS PASSIVE HWITH

UNIT THERMALLY ISOLATVED FROM MOUNTING; AND COJERED BY SUPER-INSULA

TION BLANXET TO HAINTR2IN PROPER QPERATING VEMPE RATURE.
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THERMAL ENVIRONMENTS DEFINITION

Essential to the thermal analysis of the Space Tug and its as-
sociated equipment is an adequate definition of the expected en-
vironments to*be encountered by the Tug. Many environments had
to be evaluated as to their impact on the thermal design of the
Tug vehicle. Both minimum and maximum heating conditions were
defined. An environments timeline was generated in accordance
with a major events timeline given in Table 3-1 and used for the
transient mission analysis.

The thermal environments used early in the study to determine
worst-case environments are summarized in Table 3-2. These en-
vironments were generated using the Tug flux model shown in Figure
3-1. The maximum on-orbit heating condition occurs in the Case

4 park orbit shown in Table 3-2. The planetary and albedo heat-
ing contributions of the park orbit and the vehicle's solar orien-
tation make this case's heating slightly higher than other cases
considered. Also from the environments study, the minimum heating
condition occurs in the Case 7 geosynchronous orbit. The minimal
planetary heating in the shadow portion of the orbit led to this
case being selected to evaluate cold conditions using the steady-
state sink temperature model.

In addition to the hot and cold environments used in the steady-
state model, additional envircnments were needed for the initial
orbital insertion and transfer to park orbit for the mission anal-
ysis transient model, From liftoff to cargo bay door opening,

the cargo bay temperature was assumed to be constant at 294°K
(70°F) for the first 10 minutes and was then increased to B0°F in
a linear manner to 300°K (80°F) at 0.533 hours per Reference 3.

A worst-case hot environment was simulated with the Tug in the
orbiter cargo bay with the radiator doors deployed with the or-
biter Z-axis solar oriented as shown in Figure 3-2.

The environments timeline used in the transient mission analysis
is described in Table 3-3. These environments were input to the
model for the.mission simulation in the form of array tables.
The launch and landing environments were simulated by driving
the orbiter cargo bay liner and radjator door temperatures to
the values taken from Reference 3. The reentry temperatures are
shown in Figure 3-3. These temperatures represent a worst—case
maximum heating condition with an assumed adiabatic payload in
the cargo bay.

3-1
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Table 3-1 Space Tug Thermal Control Study Mission Sequence

EVENT | EVENT DESCRIPTION
. NO.  START TIME (HOURS)  DURATION (HOURS)
1 0 o LIFTOFF
2 .133 0 INSERT INTO 104 x 195 KM (56 x 105

N. MILE) ORBIT @ 111 KM (60 N. MILE)
ALTITUDE 28.5° INCLINATION
3 .533 .05 OPEN CARGO BAY DOORS AND DEPLOY
SHUTTLE RADIATORS
4 717 | .0333 INSERTION INTO 185 Kaf (100 N. MILE) ORBIT
5 2.1835 .0333 INSERTION INTO 185 x 296 KM (100 x 160
N. MILE) TRANSFER ORBIT
6 2.9 INSERT INTO 296 KM (160 N, MILE) CIRCULAR
ORBIT AND COAST

.917 TUG/PAYLOAD DEPLOYMENT PREPARATION

7 3.06 .0833 MAN PAYLOAD HANDLING STATION AND TUG/PAYLOAD

CONSOLE

r-¢ 2190l
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Table 3-1 (contl

NO.

8

9

10

11

" 12

13
14
15-
16
17
18
19
20

21

START TIME (HOURS)

DURATTON (HOURS)

3.143
3.227
3.477
3.56
3.644
3.71
3.71
3.744
. 3.808
3.877
3.91
3.91
3.91

3.943

.0833
.25
.0833
.0833

.0667

.0333
0667
L0667

.0333

.0333

.0333

CHECKOUT TUG/PAYLOAD CONSOLE

CHECKOUT TUG/PAYLOAD (ELECTRICAL CONTINUITY)
CHECKOUT PAYLOAD HANDLING STATION

CHECKOUT MANIPULATOR ARMS (ELECTRICAL CONTINUITY)
DEPLOY ARMS TO STANDBY POSITION

MULTILAYER PURGE OFF

GN & C SYSTEM ACTIVATION/TUG THRUSTER INHIBIT

APS AND TUG PRESSURIZATION CHECKS

FUEL CELL POWER SYSTEM CHECKOUT
* FUEL CELL ACTLVATION

DEMATE SATELLITE UMBILICALS

DEMATE TUG GROUND UMBILICALS (EXCEPT VENTS)
GUIDANCE  INITIATION

RELEASE TUG HOLD DOWNS

(Fuce) [-£ BIgU]
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Table 3-1 (cont)

5
NO. START TIME {HOURS) DURATION (HOURS) Z‘i
| 1.167 TUG/PAYLOAD DEPLOYMENT f:
22 3.977 .0333 ROTATE TUG/PAYLOAD 50° OUT OF CARGO BAY g
(ASSUME TILT TABLE REMAINS IN THIS POSITION ~
UNTIL TUG RETRLEVAL)
23 4.0 .0333 GRASP TUG WITH MANIPULATOR ARMS
24 4,0333 .0333 DEMATE REENTRY HELIUM UMBILICAL
25 4.067 .0167 | POWER SWITCH INTERNAL
26 4,083 .0333 DEMATE VENT AND POWER UMBILIGALS
27 4.117 .0333 DEMATE DATA AND C&W UMBILICALS
28 4.15 .0167 RELEASE TUG ADAPTER LATCHES
29 4,167 .0667 EXTEND TUG/PAYLOAD WITH ARMS
30 4.234 .0667 ROTATE TUG/PAYLOAD AWAY FROM CARGO BAY
31 4.30 .0333 RELEASE TUG/PAYLOAD
32 4.333 o TUG CONTROL TRANSFERRED TO GROUND

33 4.333 .0833 STOW MANIPULATOR ARMS ARD POWER DOWN
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Table 3-1 (econt)

NO.  START TIME (HOURS) DURATION (HOURS)

34 4.417 .0833 ORBITER APS BURN; MANEUVERS TO SAFE DISTANCE
FROM TUG/PAYLOAD

35 4.5 .0833 VISUALLY INSPECT TUG PAYLOAD

36 4.583 . .0500 POWER DOWN PAYLOAD HANDLING STATION AND

| TUG/PAYLOAD CONSOLE

37 4.633 43 ‘ MON;TOR GROUND ACTIVITY AND VISUALLY OBSERVE
TUG DEPARTURE
PAYLOAD DELIVERY AND RETRIEVAL

39 5.06 © 0~ 11.0 PHASE IN SHUTTLE ORBIT

40 o 16.06 0 -137 PHASING/PLANE CHANGE BURN 26.5° INCLINATION

41 16.20 0 - 3.0 COAST ONE REV. IN PHASING ORBIT

42 19.20 ) . 094 - .221 ‘ PEﬁICEE BURN 296 'x 35800 KM (160 x 19300
N. MILE) .

43 19.29 . 1.0° COAST 1IN TRAﬁSFER ORBIT ‘

4o 20,29 o MIDCOURSE CORRECTION

(2u00) T-¢ 2190
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Tabile 3-1 (econt)

NO.  START TIME (HOURS) DURATION (HOURS)

45 20.29 3.96 COAST TO 35800 KM (19,300 N. MILE) APOGEE

46 24.25 .095 APOGEE BURN CIRCULARIZE 35,800 KM (19,300 N.
MILE) ORBIT 0° INCLINATION

47 2435 12.0 COAST AND ORBIT TRIM

48 36.35 1.0 _ DEPLOY PAYLOAD

49 37.35 0 PHASING BURN

50 37.35 24 COAST IN PHASING ORBIT

51 61.35 0 PHASING ORBIT CIRCULARIZATION BURN

52 61.35 12.0 RENDEZVOUS AND DOCKING

53 73.35 9.68 PHASE IN ORBIT FOR NODAL CROSSING

54 83.03 .062 DEBOOST BURN 315 x 35800 KM (170 x 19,300
N. MILE TRANSFER ORBIT) 26.5° INCLINATION

55 83.09 1.0 COAST |

56 84.09 0 MIDCOURSE CORRECTION

57 84.09 4,2 COAST TO 315 KM (170 N, MILE) PERIGEE

(4uoo) [-2 @19Pl
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Table 3-1

NO.

(cont)

START TIME (HOURS)

53
59
60
61
62

€3

66

65
66
67
68

69

88.29
88.34

91.34

91.34

91.34

91.38

21.67

91.68
94.77
96. 29
96.867

96.883

DURATION (HOURS)

.028 - 051

0 - 3.0

0 - .023

.333
3.0

3.78

1.5
.58
.0167

.33

INJECT INTC RETURN PHASING ORBIT

COAST 1 REV. IN PHASING ORBIT

CIRCULARIZE INTO 315 KM (170 N. MILE) ORBIT

28.5° INCLINATION
ORBIT TRIM

TERMINAL PHASE INITIATION AND TUG CAPTURE

SEARCH AND ACQUISITION OF TUG BY ORBITER
VENT TUG MAIN TANKS AND CLOSE VENTS
COELLIPTLC WINDOW

CONTROL OF TUG TRANSFERRED TO CREW
PLANE GHANGE WINDOW

ORBITER TPL BURN AND CDAST

ORBITER TPF BURN

ORBITER COAST TO AND ARRIVAL AT CAPTURE

POSITION

(quoo) [-¢ 274q0]
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Table 3-1 (cont)

No. START TIME (HOURS) DURATION (HOURS)

70 97.217 .667 TUG INTERIAL HOLD

71 97.217 25 MAN AND RECHECK PAYLOAD HANDLING STATION
AND TUG CONSOLES AND RECHECK MANLPULATOR ARMS

72  97.55 .0833 TUG CAPTURE BY ARMS

73 97.634 0 SHUTTLE RCS INHIBIT
TUG_SAFING SEQUENCE

74 97.634 0 TUG APS INHIBIT AND POWER SWITCH TO BATTERY

75 97.634 .75 VENT TUG TANKS (APS), FUEL CELL AND '
ACGUMULATORS

76 98.383 0 CLOSE VENTS

77 98.383 .133 RETRACT TUG TILT TABLE

78 98.517 o SECURE TUG TO TILT TABLE -

79 98.517 .05 REMAKE POWER, C & W, AND DATA UMBILICALS

80 98.566 .0333 REMAKE VENT AND PURGE UMBILICALS

81 98,60 .05 CHECKOUT POWER AND DATA INTERFACES

(quoo} 1-¢ 27901
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Table 3-1 (conel)

-N—O.

82
83
84

85

86
87
88
89
S0
91

92

93
94

95

-

START TIME (HOURS)

DURATION (HOURS)

98.65
98.65
98.683

98.717

98.75
98.817
'98.917
98.95
99.0
99.0167

99.067

99.067
100.2

100,85

0
.0333
.0333

.0333

0667
.10
.0333
.05

L0167
.0167

1.1

.65

-TUG POWER AND DATA SWITCH TO SHUTTLE

PRESSURIZE AND VENT MAIN TANKS

UMBILICAL INTERFACE CHECKS

" PRESSURIZE MAIN TANKS FOR LANDING

TUG_STOWAGE SEQUENCE

- ROTATE TUG BACK INTO CARGO BAY

SECURE TUG

'POWER DOWN TUG SUBSYSTEMS

RETURN MANIPULATOR ARMS TO STOWED POSITION
POWER DOWN MANTPULATOR ARMS

RETRACT RADIATORS AND CLOSE CARGO BAY DOORS
SECURE CARGO BAY DOORS

DEBOOST AND LANDING

COAST TO ENTRY INTERFACE

BEGIN REENTRY

LANDING

(’ZéMOD) =g @1quy



Table 3-2 Tug Natural Exvirowmente Case Swmmary

3
&
o
. L]
: ) &
- - e m
tlh’ z
5 ® _
SUN__[
CASE CONFIG~
0. URATTON PARK PHASING TRANSFER GEOSYNCHRONOUS
g ORIENTATION /2 | ORIENTATION A3 | orIENTATION Ve ORIENTATION
TUG/ -
1 ORBITER 52 k-ZLV(DEPLOY MODE) | —
TUG/ (RETRIVE _
+ — ——
2 ORBITER 52 2LV ok )
X-AXIS VELOCLTY X-AXLS VELO- %-AXIS VELO- X-AXIS VELO-
3 TUG 52 1 yECTOR 50 | eI1Y VECTOR 50 CITY VECTOR 23.5  |cITY VECTOR
X-4X15 4, To X-ax158 £ 10 X-AXIS L 10 X-aX18 L TO
4 Tue 52 K guN VECTOR 50 1 suw vEcTOR 0 | suy vECTOR 23.5  |suN VECTOR
{ X-AXIS 11 TO X-AXIS 11 TO X-AXIS 11 TO X-4XIS 11 TO
5 TUG 52 | SUN VECTOR 30§ suN vEeTOR 30 | syN vECTOR 23.5 5N VECTOR
6 e o b ¥-AXIS VELO- o i X-AXIS VELO- g | X-AXIS VELO- o |X-AXIS VELO-
CLTY VECTOR CITY VEGTOR CITY VECTOR CITY _YECTOR
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Figure 3-1 ‘Tug Flux Model Y-Axis View

Figure 3-2 Predeployment Flux Model 3-D View
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Table 3-3 Tug/Orbiter Mission Enviromments

PHASE/ORBITS MISSION TIME
(HOURS) DESCRIPTION
Launch 0 to 0.593 Radiator doors closed, cargo bay wall environment

being boundary temperatures.

100 MM Circular 0.593 to 2.061

Radiator doors deploved, fluxes calculated using
TRASYS (1 orbit)*

100 x 160 NM Transfer 2.061 to 2.805

Same as above (0.5 orbits)#

160 NM Circular 2.805 to 4.310

Same as above (1 orbit)*

160 NM Circular

4,310 to 19.360

Tug deployed - orbiter continmues in circular
orbit until 98.917 hours - fluxes from Case 4
park orbit.¥*

160 x 19300 NM Transfer

19.360 to 24.350

Tug transfer to geosynchronous-fluxes calculated
using TRASYS.*

19300 NM Circular

24,350 to 84.353

Tug at geosynchronous fluxes from Case 7 geOSyn-
chronous (2.5 orbits).¥

19300 x 160 Transfer

84.353 to 89.343

Tug return transfer from geosynchronous-fluxes
calculated using TRASYS.*

160 MM Circular

89.343 to 98.917

Tug phasing~fluxes from Case 4 park (6.4 orbits).#

160 NM Circular

98,917 to 100.13

Tug retrieved, radiator doors open (1.3 orbits).*

Landing

100.13 to 110.0

Radiator doors closed, cargo bay wall environ-
ments being boundary temperatures.

#*Incident orbital fluxes calculated with vehicle x-axis perpendicular to sun vector for the hot case

(see Table 3-2).
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STEADY—STATE PARAMETRIC STUDIES

Studies were performed to evaluate the influence of various param-
eters on the thermal design of Tug. These studies were essential
in assuring adequate thermal performance of the vehicle throughout
its mission and were concerned with both active and passive means
of providing thermal control to the Tug and its associated equip-
ment. The studies relied heavily on minimum and maximum heating
environments. The areas investigated as part of the study are
tabulated in the order they occurred in Table 4-1. A description
of ‘each thermal model that was developed and the particular studies
that it was used for is discussed in the following sections. The
results of each of the studies are also presented. ‘

Table 4-1 Parametric Studies Performed

Muitilayer Insulation Concepts
Thermal Control Coatings

Forward Compartment Heat Pipe
Honeycomb Wall Structure Conductance
Influence of Component Spacing
Component Contact Conductance
Component Heater Sizing

Transient Mission Analysis

Simplified Louver System Operations

The parametric studies began early in the program with the devel-
opment of a steady-state MITAS (Ref 4) thermal math model to gen-
erate compatmental sink temperatures. This model consists of

34 nodes as ghown in Figure 4-1. The Tug compartment, tank in-
sulation, and engine are simulated by 31 arithmetic nodes {zero
mass nodes) and the boundaries consisting of the LH; node, the
LOX node, and space. There were 117 radiation conductors and 12
linear conductors. Radiation conductors were calculated by the
model from the configuration factors and node optical properties
data with the use of the SCRPFA subroutine. Also, the absorbed
environmental fluxes were calculated within the model from the
incident flux tables and the surface optical properties. This
technique allowed for parametric variation of the surface optical
properties to investigate their influence on compartment sink
temperatures. The maximum and minimum incident heating conditions
from Table 3-2 for Case 4 park orbit and Case 7 geosynchronqus
orbit, respectively, were used in the model.
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4.1

INITTAL COATING STUDIES

Tradeoff studies to select the external surface coatings were per-
formed using the hot and cold environmental heating rates. The
optical coating parameters o and £ were varied along with the
compartmental average power dissipation.

Figure 4-2 presents the hot-case average radiation sink temperature
as a function of optical properties and selected power dissipations
for the forward compartment. The specific optical property ratios
used to generate the curves correspond to white paint (a/e = .2/.9),
aluminum paint (a/e = .26/.26), and a 50% mixture of white and
aluminum paint («/e = .23/.58). Forward compartment average sink
temperature data are presented in Figure 4-3 for the shadow portion
of Case 4 park orbit to show the effect of crating emissivity.

The same parametric rums were repeated using the cold-case envir-
onments and the results are presented in Figures 4-4 and 4-5 for
the sun and shadow portions of the orbit, respectively.

3}

INSULATION AND COATING SELECTION

Figure 4-5 indicates that coatings by themselves will be inadequate
to maintain thermal control. This is based on maintaining the for-
ward compartment average sink temperature above a minimum of 200°K
(-100°F). This criterion (200°K) was chosen based on past exper=-
ience on a similar system and a survey of minimum temperatures
obtained from Reference 2. Before pursuing coating selection
further, an investigation of vehicle heat leaks was conducted in

an effort to raise compartmental sink temperatures. It was found
that a significant heat legk existed at the forward compartment
beta cloth shield. By using a 24-layer Mylar insulation blanket
with gold on one side of each Mylar sheet, the effective emissivity
across the blanket was reduced to 0.025 per Reference 5. Using

the insulation, the forward compartment heat. leak was reduced to

a point where selective coatings were adequate in controlling in-
ternal compartment sink temperatures.

The hot and cold cases were reanalyzed using the multilayer in-
sulation blanket and the results are shown in Figures 4-6 thru

4-8. Figure 4-6 presents the forward compartment maximum sink
temperatures versus ofe ratio and shows the influence of the in-
sulation blanket, TFigure 4-7 shows similar results for the sun
portion of Case 7 geosynchronous orbit. Minimum forward compart-
ment sink temperatures are shown in Figure 4-8 for shadow portion
of the Case 7 geosynchronous orbit. This curve shows an emittance
of 0.475 which gives the desired minimum operating sink temperature
200°K (-100°F) -for nominal power dissipations of 800 to 1000 watts.

4-3
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4.3

Establishing a maximum sink temperature of 297°K (75°F), from
Figure 4-6 dictates an afe value of 0.50. The previous emittance
value of 0.475 fixes an o value of 0.2375. A similar analysis on
the intertank compartment indicated an a/¢ value of 0.60 was needed
with o = 0.246 and & = 0.41.

The paint pattern needeéd to simulate the necessary optical prop-
erties is derived from Figure 4-9. The o and ¢ for all-white
paint and all-aluminum paint are plotted on the left and right
abscissas, respectively, and connected by straight lines. Find-
ing the optical property on the graph fixes the percentages of -
aluminum to white paint needed for a mosaic pattern. For the
forward compartment 63.5% aluminum paint ‘and 36.5% white paint
is needed, and for the intertank compartment 75% aluminum paint
and 257 white paint is needed.

FORWARD COMPARTMENT HEAT PIPES

Upon completion of the thermal coating studies, heat pipes were
simulated in the forward compartment to isothermalize the compart-—
ment walls., This was necessary because hot-case wall temperature
gradients in excess of 72°K (130°F) existed between the sun and
shadowed side of the vehicle. The average compartment sink tem-
perature was unaffected by the heat pipes as shown in Figures 4-10
and 4~11. These curves compare directly with those of the coating
study, Figures 4-6 and 4-8. Heat pipe performance data for a
typical high capacity heat pipe was taken from Reference 6. The
pipe operates at a ‘2 kW load over a temperature drop of 3.89°K
{(7°F). Based on the performance data, six parallel circumferential
heat pipes were integrated into the compartment walls for simu-
lation in the model,

Using a fin effectiveness of 0.85 and a joint conductance of

12.1 ;FEFE_ (800 Btu/hr-°F-ft?) Reference 7, a conductance value
of 467 W/°K (2870 Btu/hr-°F) was calculated between each wall and
each heat pipe node. The heat pipe performance data were reduced
to an effective conductance between each heat pipe node of 879 W/°K
(5400 Btu/hr-°F). The large heat pipe conductance caused oscil-
lations when running the math model, resulting in excessive ma=-
chine time for temperature convergence. A more efficient tech—
nique was then employed that replaced the original heat pipe nodes
and network with an equivalent series network connecting adjacent
compartment wall nodes with a conductance .of 184.6 W/°K (1134
Btu/hr-°"F), A reduction in the number of iterations was also
achieved by first solving the network without the heat pipes and
calculating a fourth power temperature average of the .wall neodes.
This temperature was applied to the wall nodes as starting wall
temperatures for the heat pipe simulation.

4-11
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The effectiveness of the heat pipe in reducing circumferential
gradients is shown.in Figures 4-12 and 4-13 for Case 7 geosychronous
and Case & park orbits, regpectively. The forward compartment

wall temperature gradient is reduced from 50 to 2.8°K in geo-
sychronous orbit and from 36 to 2.2°K in park orbit.

HONEYCOMB STUDIES

A study was performed to determine the influence of the heneycomb
structure on compartmental temperatures. A duplicate set of forward
compartment wall nodes were added to the model simulating the fi-
berglass epoXy, aluminum core honeycomb structure. Figures 4=14
and 4~15 show the influence of the honeycomb conductance on the
forward internal sink temperature for the hot and cold cases, re-
spectively, The ATs from the above curves should be added to
Figures 4-6 and 4-8, respectively, to obtain the internal sink
temperatures for the honeycomb structure. The maximum conductance
value of 1 watt/°K (1.94 but/°F) per 0.093 m? (1 £t2) results in

a compartment sink temperature 3.3°K {6°F) warmer than no honey-
comb for the hot case. The conductance valve was obtained as-
suming an infinite value for the joint conductances. A more re-
alistic value for the jeint conductances would result in lower
overall conductance values, thus increasing the effect on compart-
ment sink temperatures. The use of a nonmetallic core, such as
fiberglass would further increase the AT by reducing the conduc-
tivity as shown in the curves. Hence, the choice of the honeycomb
structure for Tug will have an influence on the thermal design

and could impact the basic passive concept chosen. A further
discussion of the honeycomb structure is included in Section 7.
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5.1

TRANSIENT ANALYSIS

MODEL DESCRIPTION AND ASSUMPTIONS

A transient mission model was constructed to simulate an actual

Tug mission from liftoff through landing and subsequent cooldown.
This model was used to predict individual ‘component temperature
histories along with the structural temperatures of the Tug vehicle.
The model incorperated the thermal control features resulting from
the previous studies using the steady-state sink temperature model.
These features include the use of heat pipes in the forward com-
partment, multilayer insulation on the forward compartment beta
cloth shield, dand the external paint pattern determined from the
optical properties tradeoff studies. The transient model takes
both the thermal capacitance and a realistic power distribution

for each component into account in arriving at temperatures.

The overall transient mission model consists of two separate sub-
models for the forward and intertank compartments. The forward and
intertank compartment equipment is listed and described in Tables
5-1 and 5-2, respectively. Figure 5-1 is a TRASYS (Ref 9) computer
plot showing the forward compartment equipment, equipment identi-
fiers, node numbers, and their locations. An expanded rollout

view of the forward compartment is shown in Figure 5-2 and top view
is shown for clarity in Figure 5-3. The intertank equipment, equip-
ment location, and node numbers are shown In Figures 5-4 and 5-5.

The radiation network for the forward compartment consisted of 214
surfaces comprised of eight forward compartment cylinder walls, the
beta cloth shield, LH, forward dome, and 204 component surfaces,
The 214 original surfaces were reduced to 44 nodes for inclusion in
the thermal model. The radiation model for the intertank consists
of 56 surfaces condensed into 28 nodes. These include eight inter-
ior wall nodes, LH; and LOX domes, and 18 equipment nodes.

The six sides of each component were used in calculating the black-
body view facters using the TRASYS program. The view factors were

used to calculate the grey-body exchange factors alsc using TRASYS,
and were then condensed to single node components using the program
radiation condenser option.

Many thermal aspects of the mission analysis are common to both the
forward compartment and the intertank compartment models. The time
sequence of environments used is shown in Figure 5-6 and is presented
in Table 3-3. The liftoff and landing environments are controlled by
time varying boundary temperatures for the radiator doors and the

5-1



Table 5-1 Foruward Compartment Equipment

Data Reference
Equipment | Baseline®
Subsystem Equipment ldentifier | Quantity | Node Numbers | Data Bank | Document’ | Comments
fuideance, Mavigation & Control
Inertial Measutement Unikt THU-11 1 300 x Redundant unit
Star Tracker ST-1 2 310, 320 x Tncludes elec-
tronies
Horizon Scanner H5-& 1 330 X Redundant unit
lHorizon Scanner Electronics HSE-2 1 340 b4 Redundant unit
Laser Radar LR-2 2 350, 360 %
laser Radar Electronics LRE-2 2 370, 380 x
Television TV-2 2 390, 400 X
Diata lManagement
Computet COME -4 2 410, 420 x
Data Acguisition Unit — & 530, 540 Page 67 Lrouped in pairs
in the thermal
model .
Telemetry Formatter - 2 560, 570 Page 67
Data Rus Controller - 2 580, 590 Page 67
Tape Recorder TR-1 1 490 X
Communications *
Transponder, PM eM-1 2 430, 440 X
Transmitctar, F TFM-1 2 450, 460 x
Lecoder DEC-1 2 470, 480 %
Pawer Amplifier Pa-1 2 500, 510
RF Multiplexer RiM-1 1 520 x
Hybrid Junction - 1 600 Page 70
Filter ' - 1 610 Page 70
Modulation processor - 2 620, 630 Page 70
*Reference 7 Baseline Tug Definition Document
Table 5-2 Intertank Corpartment Lguipment
Data Reference
Equipment | Baseline®
Systen/Subsyscem Equipment | Quantity |Node NHumbetrs Data Bank | Document Comments
Auxiliary Propulsion System
APS Tanks 8 201, 206, 221, 226
241, 246, 261, 266 | X
Valve Amplifier 1 g0 X
Main Propulsion System
Helium Pressurization 4 231, 236, 251, 256 1%
Spheres
Data Management Subsystem
Data Acquisiticon Unit 2 280 Page 67 Grouped in
pairs
Electrical Power Subsystem
Fuel Cell FCL 1 on X
Battery 1 270 X
LH; Sphere 1 211 X
LOX Sphere 1 216 X

*Reference 7 Baseline Tug Definition

Deocument
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XX5 (TOP-TOWARD BETA CLOTH)
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Node Numbers are Used in MITAS

Figure 5-3 Tug Forward Compariment Interior Nodes
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Figure 5-4 Tug Intertank Compartment Equipment Nodes

5-6



FAE A )

AR

B A

»

4

|

{\

it AAE | SN S By

« Tk-
"

L L

b — - = -

- L - -
x S

Indicates Nodes On Back Side

)

(

Figure §-5 Tug Intertank Interior Nodes

5-7



Event No.

Event Number

1

2

Description

185 km Circular Orbit (Tug + Orbiter)

185 km x 296 lkm Transfer Orbit (Tug + Orbiter)
296 km Circular OrBit (Tug + Orbiter)

296 km Circulaf Orbiter (Case 4 - Tug Only)
296 km x 35,800 km Transfer Orbit (Tug Only)
35,800 km Geosynchronous Orbit (Tug Only)
35,800 km x 296 km Transfer Orbit (Tug Only)

Liftoff/Landing - Cooldown (Tug + Orbiter)

e2.00 44 .00 £85.00 £83.00
MISSION TIME - HOURS

Figure §-6 Tug Mission Event Sequence
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cargo bay liner (ref 3). All on-orbit environments consist of

the natural absorbed solar, albedo, and planetary heating, and
were calculated using TRASYS in conjunction with the surface op-
tical properties that were determined from the steady-state trade-
off studies.

THe Tug and orbiter radiation interchange was accounted for and
depends on the vehicle configuration, which follows the events
timeline shown in Figure 5-7. Additionally, convection interaction
between the orbiter and the Tug was accounted for at liftoff and
landing. A natural convection coefficient (h) was calculated with
the use of the following correlation from Reference 10 for a hori-
zontal wall. ' ' '

Nu = 0.35 Gr Pr J 4
where

Nu = Nusselt Number,
Gr = Grashof Number,
Pr = Prandtl Number.

Evlauating the properties of air at a temperature of 311°K (100°F)
and assuming a constant acceleration of 2 g results in the follow-
ing expression for

- : Y
h =X [pz M"‘

where
_ watts - Btu
K= 0.92278 meter? °K 0.5267 br 22 °F

air density,

p

AT = temperature difference between orbiter cargo bay air tempera-
ture and the Tug skin

The air density is a function of altitude (taken from Reference
3), and input to the model as a time varying array. Also the
quantity used for AT assumes that the entering air will be heated
to the average carge bay temperature as it passes through the
orbiter structure. The resulting h value used in the model is
shown in Figure 5-8.



Indicator HNo. Description

1 Tug in Orbiter, Doors Closed

2 Tug in Orbiter, Doors Open

3 , Tug Deployed

3

2
o
S e
o
3]
-
o
A

i
B~
-
]
O
g
g |
O

22.00 Y4.00 66.00 83.00 110.00
‘ MISSION TIME - HOURS

Flgure 5-7 Mission Geometry Sequence
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A circumferential heat pipe was simulated in the forward compart-
ment similar to the heat pipe used in the steady-state model. The
major difference was that the fourth power average of the eight
wall node temperatures was substituted for the calculated wall node
temperature at the beginning of each time step. This technique
saved computer time by reducing the number of iterations needed for
each transient time step.

The emergency battery used in the intertank model also included a
simulated louver system as shown in Figure 5-9. The battery was
modeled assuming five of the sides were insulated with an integral
5 watt thermostatically controlled heater to maintain its storage
temperature at 290.3°K (62.5°F) = 1.39°K (2.5°F). The base of the
battery was assumed to be coupled to a louver system whose blades
were fully closed at 292°K (65°F) and fully open at 303°K (85°F).
The louver system radiated to the external skin of the intertank.
This assumed inner honeycomb paneling was removed from the louvered
area. The effective emittance of the louver system was input to
the model as function of the baseplate temperature and is shown in
Figure 5-10. The battery was activated at 97.63 houre at which
time 45 watts of internal energy were assumed to be generated within
the battery for 0.5 hours.

The fuel cell was modeled as an insulated component that operated
at a continuous boundary temperature of 356°K (180°F) until it is
deactivated at 97.63 hours. At this time the fuel cell tempera-
ture was allowed to respond like any normal diffusion node.

A contact conductance value between the component and the mounting
surface was calculated based on the number of bolted contacts
assuming a 0.60 E%;ts (1,13 i;EUF ) conduction coupling per bolt
for individual clip or rail mounts. This nominal value was taken
from Reference 11 and based on aluminum bolted joints used in
spacecraft application. In the final analysis, the original value
had to be reduced for most of the components because the contact
conductance couplings were dominating all other couplings. The
component contact conductance used in the model along with other
component thermal characteristics are given in Tables 5-3 and 5-5
for the forward compartment model and intertank compartment models
respectively.

Transient analyses were run for two environment conditions desig-
nated "hot case" and "cold case." The hot case uses the environ-
ments time line described in Table 3-3 and shown in Figure 5-7

and the configuration time line shown in Figure 5-8. Component
power dissipation cycles are indexed in Tables 5-3 thru 5-6. The
hot case represents a mission consisting of a hot biased park orbit
(Table 3-2, Case 4 park) and landing environment coupled with a hot
geosynchronous orbit which included a cyclic shadow period {Table
3-2, case 7 geosynchronous).
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Figure 5-9 Lowver System/Mounting Configu?ation
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Table 5-3 Forward Compartment Component and Hot~Case Summary

* Contains an internal heater.

Avg
Heater
Contact Thermal (Dissi- Temper- [Heater Power
Sysvem/ Surface Conductance, |Mass, pated Power |ature Duty Heater |CLonsump-—
Compenent Node [Area, Watts Watt-hr (Power, |Time |Histery (Cycle |Size, tion
Hame No. m C 7K °K watts |Line ({Fig.) (Fig.) |{watts [wactts
Guldance Navigation and Control
Inertial Meas. Unit 300 10,544 6.90 [3.57 6.91 L44.0% ({1) 546 NAA N/A
Star Tracker Pri 310 | 0.215 6.90 {1.19 1.16 5.8 (D) 5-48 5-114 20 0.58
Star Tracker Sec 320 |0.215 0.90 |1.19 1.16 5.0 [€2) 5-50 5-116 20 D.56
Horizon Scanner 330 [0.218 0.90 |1.79 0.79 10.0 [(2) 5-32 5-118 15 0.40
Horizon Scanner Elec. | 340 |0.454 0.05 2,98 3.69 5.0 (D) 5-34 5-120 25 0.47
lLaser Radar Pri 350 10.836 0.90 {0.72 7.44 70.0 | (3 5-56 5-122 |150 82.57
Lager Radar Sec 360 10.836 0.90 |0.72 7.44 70.0 (3 5-58 5-124 [150 84.61
Laser Radar Elec Pri | 370 |0.557 0.90 |0.47 2,11 30,0 |(3) 5-860 5-126 [150 £5,32
Laser Radar Elec Sec 380 10.557 0.90 |0.47 2.11 30.0 {3) 5-62 5.128 150 65,80
Television Pri 390 lo.277 la.os l1.19 1.3y 14.8 (4} 5-64 5-130 20 0.62
Television Sec 400 {0.277  |0.05 |1.19 1.37 C14.8 L4 5-66 5-132 20 0.67
Data Management System
Computer Pri 410 [0.075 |0.90 |1.19 0.63  |16.0 [(1y |5-68 5-13¢ | 20 0.0
Computetr Sec 420 {0,075 0.90 {1.19 0.63 16.0 (@8] 5-70 5-136 20 0.0
Data Acc Unit 1,2 530 l0.078 0,90 [1.19 0.90 5.2 (5) 5-72 N/A N/A N/IA
Data Ace Unit 3,4 340 0.078 0.90 |1.19 0.%0 5.2 (5) 5-74 NiA N/A N/A
Data Acc Unit 4,3 550 10.078 0.90 ;1.19 0.90 5.2 (5) 5-76 N/A N/A N/A
Tlmtry Frmtr Pri 560 0.139 ¢.%0 11,19 0.63 7.0 (L 5-78 NiAT NfA Nfa
Tlmtry Frmtr Sec 570 0.139 ¢.90 (1.19 0.63 7.0 (1) 5-80 N/A N/A N/A
Data Bus Cont (Pri} -580 |0.121 0.90 |1.19 10,63 6.5 (@8] 5-82 %N/A KfA NiA
Data Bus Comt {Sec) 590 |0.121 0.90 |1.19 0.63 6.5 (1) 5~84 NfA N/A N/A
Tape Recorder 490 |0.138 0,50 |0.63 1,63 B.40 | (1} 5~86 NS N/A N/A
Communications Sysctem
Transponder, PM Pri 430 |0.122 0.85 [1.79 0.42 6.2 (1) 5-88 NfA N/A N/A
Transponder, PM Sec 440 0,122 0.85 (1.79 0.42 6.2 (1) 5*?0 N/A N/a N/A
Transmitter, FM Pri 450 10.196 0.85 [3.57 1.00 60.3 {1} 5-92 N/A NfA NIA
Transmitter, FM Sec 460 | 0.1%6 0.85 3.57 1.00 €0.5 (1) 5-04 N/A N/A N/A
Decoder Pri 470 ¢.060 0.10 |1.19 0.32 2,8 (1) 5-96 N/A NJA N/A
Decoder Sec 480 ] 0.060 0,10 [1.19 g.32 2.8 (1) 5«98 N/A N/A N/A
Power Amplifier Pri | 500 |[0.018 0.90 | 0.60 0.05 i6.2 (1} ‘5-100 N/A N/A N/A
Fower Amplifier'Sec 510 ;0.018 0,90 |{0.60 0.05 16.2 (1} 5-102 N/A N/A N/A
RF Multiplexer 520 }o0.130 0.85 10.60 Q.47 0.0 N/A 5;104 N/A 15 0.0
Hybrid Junction 600 | 0.045 0.%0 |1.19 0.42 0.0 N/A 5-106 Nfa N/A N/A
Fllter 610 |0.027 0.90 [L.19 0.42 0.0 /A 5-108 N/A N/A NfA
Modulation Proc Pri 620 0.153 0.90 |1.49 1.47 7.5 (1) 5-110 NAA N/A, NS4
Modulation Ptce Sec k]H] 0.153 0.90 [1.79 1.47 7.5 (1) 5-112 N/A N/A NfA
(1) Continuous power from liftoff to 98.92 hours.
(2) ON for (.5 hours prior to each main engine burn per Table 3-1.
(3) Power en at 60.83 hours. Power cff at 61.83 hours.
{4) Power on at 51.33 hours. Power off at 61.B3 hours,
(5} Continuous power [rom liftoff{ through landing.
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Table -4 Forward Compartment (old-Case Summary

Average Average
Heater Heater Heater Heater
System Temp Duty Heater |Power System Temp . Duty Heater [Power
Component Nede [History |Cycle |fize, Consumed ,| Component Node jHistory |Cycle Size, [Consumed,
Name JNO. (rig.) (Fig.) |wactts watts Hame No. {Fig.} (Fig.} |watts |watts
Guidance Communications
Navigation &
Control System
Inertial Meas, Unit 300 5-47 Transponder, PM Pri 430 589
Star Tracker Pri 310 5-49 5-115 20 20 Transponder, PM Sec 440 5-91
Star Tracker Sec 320 5-51 5-117 20 20 Transmitter, FM Pri 450 5-93
Horizon Scanner 330 5-53 5-119 15 15 Transmittet, FM Sec 460 5-95
Horizon Scammer Elec. 340 | 5-55 5-121 25 25 Decader, Pri 470 15-87
Laser Radar Pri 350 | 5-57 5-123 | 150 150 Decoder, Sec 480 | 5-99
Laser Radar Sec 360 5-59 5-125 150 150 Power Amplfr. Pri 500 5-101
Laser Radatr Elec Pri 370 5«61 5-127 150 150 Power Amplfr. Sec 5310 5-103
Laser Radar Elec Sec 380 5-63 5-129 150 150 RF Multiplexer 520 5=-105 15 15
Television Pri 390 - | 5-65 5-131 20 2Q Hybrid Junction 600 5-107 N/A Nf& N/a
Television Sec 400 5-67 5-133 20 20 Filter 610 | 5-109 N/A N/A N/A
Modulation Processor, Prij 620 5-111 N/A N/A NfA
Data Medulation Processor, Sec| 630 5-113 N/A N/A N/A
Management
Computer Pri 41Q 5-69 5~-135 20 20
Computer Sec 42Q 5-71 5-137 20 20
Data Ace Unit 1,2 530 5-73 N/A N/A N/A
Data Acc Unit 3,4 340 | 5-75 NfA w/A N/A
Data Acc Unit 4,5 550 | 5-77 N/A N/A N/A
Tlmtry Fromtr Pri 560 | 5-79 N/A N/A N/A
Tlmtry Frmtr Sec 570 5-81 N/A N/A N/A
Data Bus Cont Pri 580 | 5-83 N/A N/A N/A
Data Bus Cont. Sec 590 | 5-85 N/A N/A N/A
Tape Recorder 490 | 5-87 N/A H/A N/A

p-g 2190L
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Table §-5 Intertank Compartment Component and Hot-Case Summary

Average
Heater
Contact Thermal Tenp— Power
System/ Surface Conductance, |Mass, Oper. Power |erature |Heater {Consump-
Component Node |Area, Watts Watt—hr Poyer, |[Time Higtory |Size, tion,
Name No. ([m2 € "K *K watts |(Line [(Fig.) [watts |watts
Auxiliary
Propulsion
System :
APS Tanks | 801l* (1.028 0.10® Isolated Heater |n/a N/A 5-178%% |1 0.04
' Node ‘
Valve Ampiifier 290 (0.225 0.90 0.38 1.33 38.0 (2) 5-180 N/A N/A
MainPropulsion Sys. '
Helium Press Spheres | 231*% |1.487 0.10(1) Isolated Arithmetic |N/A N/a 5-182 N/A N/A
. Nades
Data Management Sys. .
Data Acc Unit 280 |0.078" 0.90  0.24 0.89 5.2 (3) 5-184  |N/A N/A
- (1) Represents emissivity of insulation blanket.
(2) Continuous power from liftoff to 98.92 hours.
{3) Contimious power from liftoff fhrough landing.
* 601 is representative of the eight APS tanks.
231 is representative of the 4 helium pressurization spheres.
%% Represents the temperature of outside insulation blanket.




81-6

Tuple 5-& (conol)

Average
Heater
Contact Thermal Temp—. Heater Power
System Surface Conductance, | Mass Oper. tPower [erature |Duty Heater |Consump-
Component Node |Area Watts Watt-hr Power, |[Time, [History |Cycle fize, tion,
Nane No. m? £ °K °K watts |watts [{Fig.) (Fig.) |watts |watts
Electrical
Power
Subsystem
LHz Sphere 211 2.088 0.10(1) Tsolated ‘| Arithmetic |N/A N/A 5-186% N/A N/A N/A
Node :
10X Sphere 216 |1.487 0.101 |1so1ated Arithmetic |N/A W/A  }5-188%  [N/A NJA | N/A
Node
Batteryk* 275 0.140 0.10(1) Louvered 1.11 45W 5-190 5-194 5 .02
Fuel Cell##*=® 433 0.445 0.10(1) 0.234 0.64 N/A N/A 5-192 N/A N/A N/A
(1) Represents emissivity of insulation blanket.
# Kepresents temperature of outside of insulation blanket.
#%  Five sides of the battery are insulated 0.11 m? (1.19 ft?), = 0.1. The base 0.29 m? (0.3125 ft%)
is covered by louvers (2 shown in Figure 35-10}.
w 356°K {180°F) until 97.63 hours when its

The fuel cell temperature is held at a constant
temperature is calculated normally.

(joH02) -G B7qD]



Table 5-6 Intertank Compartment Cold-Case Swmmary

Average

Temp- Heater Heater
System/ _ erature |Duty Heater |Power
Component Node |[History |Cycle Size, Consumed,
Name No. (Fig.) (Fig.) |watts {watts
Aux. Propulsion
System _
APS Tanks 601#*  |5-179%% N/A .2 .16
Valve Amplifier 290 [5-181%% [IN/A N/A
Main Propl'sn System
Helium Press Sphere | 231% [5-183 N/A N/A
Data Mgmt System
Data Acc., Unit 280 |5-185 N/A _ N/A
Elec. Power Subsys.
LH; Sphere 211  |5-187 N/A N/A
LOX Sphere 216 5-189 N/A N/A
Battery 275 5-191 53-195 - |NfA
Fuel Cell 433 |5-193 N/A N/a

o 601 is representative of the eight APS tanks; 231 1s representative

of the four helium spheres.
%%  Represents temperature of outside insulation blanket.
%*¥% Represents net heat transfer to maintain fluid at 278°K (40°F).
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5.2

The cold case used enviromments comsistent with the hot case
until 24.35 hours, corresponding to the first shadow polnt in
geosynchronous orbit. At this time the Tug was reoriented with
the longitudinal axis parallel to the solar vector (Table 3-2,
Case 8 geosynchronous) to minimize external orbital heating.
Component power dissipation cycles continued as in the hot case.
The cold-case simulation was terminated at 45 hours.

FORWARD COMPARTMENT RESULTS

The results of the hot and cold cases for the forward compartment
analyzed are summarized in Tables 5-3 and 5-4. Many of the forward
compartment components had simulated thermostatically controlled
heaters to maintain their temperature limits.

Each component was reviewed after the initial hot case run for
compatibility with its allowable temperature limits while the
compar tment power was at the 800-watt level. Energy balances were
performed on the components that dropped below their lower tem-
perature limits to determine major heat leaks and heater sizing
requirements. As previously discussed, the mounting conduction
was reduced and heaters added where required. The heaters were
sized to maintain the lower temperature limit of each component
in the hot case. During this exercise, it became apparent that
excessive heater power was being consumed for the hot case and
this was expected to be significantly worst in the later cold-
case run. The cold-case run was perfomred to further determine
heater requirements. These runs pointed to the need for am al-
ternative thermal control concept to avoid the excessive heater
power consumption.

The total heater energy required by these components was calcu-
lated by time integrating the instantaneous heater power over

the total mission duration. Individual component heater powers
are tabhulated in Table 5-3 and the total integrated heatetr energy
for the entire forward compartment ig shown in Figures 5-11 and
5-12 for the hot and cold cases, respectively. The hot-case
mission resulted in an average of 275 watts of heater power over
most of the mission. The cold-case mission consumed an average

of 774 watts of heater power after 25 hours in the mission. This
was not sufficient to maintain the component lower temperature
limits. This emphasizes the need to alter the thermal control
concept originally chosen. The transient model wall nodes are
shown in Figure 5-13 and the hot and cold case temperature results
for these nodes are given in Figures 5-14 thru 5-45. Figures 5-46
thru 5-137 present the forward component temperatures.
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5.3

The remaining areas of the forward compartment are presented in
Figures 5-138 thru 5-143. Figures 5-138 and 5-139 present the
outer layer of insulation on the LH, tank dome temperature for the
hot and cold cases. Figures 5-140 and 5-141 present the forward
shield inner surface temperatures and Figures 5-142 and 5-143
present the outer surface (beta cloth) temperatures for the hot
and cold cases respectively. Figures 5-144 and 5-145 present the
forward compartment Internal sink temperatures derived from each
case. Comparison of these data with the previous steady-state
results accounts for the honeycomb AT and should be compared only
where steady-state conditions exist.

INTERTANK COMPARTMENT RESULTS

The intertank compartment results are presented beginning with

the outer and ingide skin tempeératures in Figures 5-146 through

5-177. Tables 5-5 and 5-6 summarize the component data and refer

" to the appropriate figures for the hot and cold case temperature
_results. This compartment .contains several tanks as shown in Fig-

ures 5-4 and 5-5, hence the data presented in the report is repre-
sentative of each of the various types of tanks. Figure 5-178
presents the insulation temperature for one of the eight APS tanks
where each tank was controlled to 278°K (40°F). Node 231, Figure
5-182, presents representative data for the four helium pressuri~
zation spheres. The fuel cell LH; and LOX tank plots represent
the insulation temperatures. .Each tank was held at its liquid
temperature during the mission simulations. Insulation properties
derived from Reference 5 were used on the LH;, LOX, and APS tanks,
assuming the configuration is as applied to the forward shield.

The LH; tank lower dome insulation and LOX tank upper dome insula-
tion temperatures are presented in Fipures 5-196 thru 5-199. The
intertank compartment sink temperature is presented in Figures
5-200 and 5-201. ' '
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DISCUSSION OF RESULTS

Thermal control of the forward and intertank compartments for
hot-case missions was achieved with the need of heater power.

The heater power was concentrated in the low duty cycle components,
namely, the primary and secondary laser radars and their electronics
packages. Increasing the external coating o/fc ratio would reduce
the amount of heater power required by increasing the internal com-
partmental sink temperature; however, the cold-case heater power
consumption would likely remain high. The cold-case simulation
resulted in all components except the fuel cell and battery drop-
ping below the allowable lower temperature limits. Fifteen of the
components were 10°K or less below limits while 31 were 10 to 20°K
below and seven were 20 to 30°K below limits. Out of the latter
group, the IMU heater power curve was 50% of expected, which would
eliminate its cold problem. Several methods are available to solve
the cold-case problems, reduce the lower limit qualifications
temperature, add heater power, increase conduction isolation, change
component coatings, and add insulation. All of these would rely
upon heater power however, and some of the components would be af-
fected in the hot case. In any event the hot case would still re-
quire heater power which ideally should not require any heat.

An alternative forward compartment layout would be prudent to solve
the cold case problems while reducing the need of heater power,

The components should be grouped to allow mounting of active and
inactive components on the same mount. Mounting high and low duty
cycle components on thermal conditioning panels Chighly conductive
panels) would be a desirable configuration from a thermal point of
view. The configuration considered here is shown in Figure 5-202.
Az shown, louvers are mounted to the skin side of the panel. The
louvers provide the means of reducing panel heat losses in the cold
case, while the thermal conditioning panel distributes heat between
components, thus reducing the heater power required by low duty
cycle components. Figures 5-203 and 5-204 present the results of

a study to determine the heat flux required to maintain various
panel temperatures as a function of skin temperature and internal
compartmental sink temperature (TE).

Referring to the hot case curve, Figure 5-203, and assuming the
skin and internal sink temperatures at 294.4°K (70°F), the panel
flux range would vary from 56.7 to 179.7 watts/meter? (18 to 57
Btu/hr-ft?). This corresponds to a panel temperature range of

300 to 311°K (80 to 100°F). For the 600-watt heat load a total
panel area of 3.34 meters® (36 feet?) would result in a panel

flux of 179.4 watts/meterz, yielding a panel temperature of 311°K.
The advantage in using this configuration is apparent when the
cold-case data for a 200°K (-100°F) skin and internal sink tempera-
ture are considered. The flux required to maintain a 272°K (30°F)
panel temperature is 220.8 watts/meter® (70 Btu/hr-ft2). Comparing
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the hot and cold case values results in a heater requirement of
41.4 watts/meter? to maintain the selected panel temperature.
Scaling this up to the assumed panel area, 138.3 watts would be
required. This compares with the amount of heat required in the
hot case and reduces the cold-case heater power by more than 600
watts., Increasing the total panel area by 1/3 increases the

heater power significantly to 101.4 watts/meter? or a total of

508 watts! This would still yield a savings in excess of 275 watts
for the cold case.

As shown, a significant reduction in heater power can be achieved
using this method. Several other advantages are derived from this
approach. As the Tug design evolves, the forward compar tment
power level will probably change. This method of thermal control
provides a means of reducing the sensitivity of steady-state power
on heater power requirements by maintaining preselected panel heat
fluxes. Minimum cable weighit can be achieved by properly grouping
components on individual panels while satisfying thermal require-
ments. The structural design would be simplified by reducing the
number of component structural interfaces to a minimum. One
tradecff would be required to determine if the reduced cable and
consumable welghts would offset the added weight of the louvers
and thermal conditioning panels. Other tradecffs concerning cost
and design flexibility would also be in order.

The intertank compartment suffers from the lack of heat dissipated
to maintain acceptable internal sink and skin temperatures. Coat-.
ings, thermal standoffs, and heaters could be used as a solution. .
Due to number of components expected in this compartment the louver/
thermal conditioning panel concept appears to be too heavy for appli
cation.
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FUEL CELL HEAT REJECTION SYSTEM
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Tnermal control of the fuel cell electrical power subsystem rep—
resents a critical design consideration because a failure in this
area could result in failure to achieve the specific mission ob-
jectives and the loss of a Tug. Two approaches were explored in
this area; each used radiators. The approaches differed only in
how the heat was transported from the fuel cell to the radiators.
The system chosen was a redundant pumped fluid system using series-
serieg bypassed radiators. The pumped fluid system was chosen
over variable conductance {(VC) heat pipes because of the current
state of the art of pumped fluid systems and the current problems
with VC heat pipes. The Tug is penalized in power and weight by
this choice. As VC heat pipe techmology expands in the future,
the use of VC heat pipes in this part of the Tug design should

be possible with less risk.

The fuel cell in this study was based upon design data obtained
from Pratt and Whitney (Ref 13). The fuel cell heat rejection
system is required to maintain the fuel cell internal fluid loop
within an acceptable temperature range 349.67 to 355.2°K (170 to
180°F) independent of heat load. The baseline for the study in-
cluded a single fuel cell which, when coupled with the components
used in the study, resulted in an electrical load that varied from
600 to 1500 watts. The radiator design was based on rejecting re-
sultant waste heat loads plus the fuel cell pump and radiator pump
power .

Four equally sized radiator panels were assumed consistant with
the baseline. The four radiators were located in each quadrant -
of the intertank compartment forward of and clocked 45° from the
APS modules. The four panels, located as shown in Figure 6-1
reduce the effects of plume heating from the APS modules and mini-
mize attitude influences from external heating. The apparent
choice of a hydrazine APS configuration provides one of the more
significant changes from earlier configurations (Ref 8), and will
reduce the plume heating on the radiators to levels experienced
on the Titan IIIC Transtdge vehicle. These levels did not impair
the radiator performance in seven flights of that vehicle.

The thermal environments were evaluated to determine the worst-
case design environments for use in the radiator design. The cold-
case design conditions were obvious, because at synchronous al-
titude the earth emitted and albedo is near zero and the Tug could
be aligned with the sunline to result in no heat being applied to
the radiator panels. The case 4 park orbit, B = 52°, resulted in
slightly higher incident fluxes than the other cases studied and
was chosen for the hot case. The vehicle orientation maximized
absorbed heating when two radiators were exposed to the sun and
when the included angle between the center of each radiator and
the sun line was 45° as shown in Figure 6~1.
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The maximum heat load to be rejected was used with the hot-case
thermal environment and minimum heat load to be rejected was used
with the cold-case environment to obtain the thermal design con-
ditions. These conditions are consistent with orbital altitude
requirements of 296 to 35,750 km (160 to 19300 n mi) with no at-—
titude constraints. : :

Operationally the fuel cell was assumed to be activated in orbit
before the Tug and payload were released by the orbiter. The fuel
cell was also assumed to be deactivated before the Tug was remated
to the orbiter. This sequence of events was sufficient to permit
the fluid system to be designed without }nterfacing with the or-
biter for thermal control, The potential for a fluid loop failure
during a 7-day mission was considered sufficient for adding a re-
dundant fluid loop. Each loop was designed to carry the full heat
lecad. 1In addition, the radiators were used to provide micromete-
teorite protection for the fluid lines.

The fuel cell system shown in Figure 6-2 was obtained from Ref--
erence 13. The fuel cell generates waste heat, which is removed
by a fluid loop. The coolant temperature control valve, pump,
and interconnecting lines are an integral part of the system.
Cell performance is predicated on maintaining the coolant through
the fuel cell in a narrow temperature range independent of the
electrical lead. The primary parameters are control of the inlet
temperature to 355.4°K (180°F) ig°K and limiting the temperature
rise through the cell to 5.6°K (10°F) under maximum load condi-
tions. Figure 6-3 presents the waste heat rejection as a function
" of electrical load with the design conditions shown. The warmup °
heater shown in Figure 6-2 is used to heat the fluid and the cell
to the operating temperature level during the activatien period
and is not used during the normal operational period. Pratt and
Whitney suggests the use either water . or FC-43 as the working
fluid on the fuel cell side of the interface. FC-43 was used in
the simulations; however, water could have been used because the
interface temperatures chosen in the study will net result in
freezing temperatures.

The reactants, H, and 0,, enter the cell as low-pressure gases
and exit as slightly superheated steam at 353°K. The reactant
consumption is presented in Figure 6-~4. For this study the water
vapor was assumed to be dumped continucusly. However, payload
contamination requirements could require a different approach.
For example, the water could be stored in a tank after being con-
densed and dumped overboard during main engine burns, thus re-
ducing the water vapor around the Tug during coast periods.

.
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The fuel cell heat rejection fluid loop is presented in Figure
6«5, which shows a-single filuid loop through the thermal control
valve and the radiators. The schematic is presented in this man-
ner for clarity purposes only, and should be interpreted as having
a redundant loop. The regenerator was considered to be a single
unit with a redundant secondary loop.

The four radiator panels are in series with tubes on each panel
in series, thus the series-series description. The radiators are
similar in design to the Transtage radiator using the P-tube rail
concept, Figures 6-5 and 6-6, details A and B, which allows two
P-tubes to be attached to a sgingle rail. Each panel has two con-
tinuous P-tubes from inlet to outlet with the flange removed in
the bend and rail crossover areas. This concept minimizes the
number of fluid connections and potential leakage points. The
concept also provides micrometeorite protection.

The fluid is bypassed around the radiators, Figure 6-5, as the
return fluid temperature drops below a predetermined level, 333°K
(140°F). The thermal control valve was envisioned as a mechanically
actuated valve using an electronic controller that senses the
mixed fluid temperature going to the regenerator, T3, and controls
333°K (140°F). This temperature was selected to meet the heat
rejection requirements while minimizing radiator area. A lower
temperature would also result in lower flowrates through the ra-
diator in the cold case coupled with lower fluid temperatures.

The pump was located on the outlet side of the regenerator to
maximize the fluid temperature entering the radiators in the cold
case. Freon E-1, the chosen working fluid, was developed pri-
marily to yield heat transport properties similar to Freon 21 while
eliminating the compatibility problems of that fluid. The cold-
case results; discussed later, indicate that a heater is not re-
quired to avoid excessively cold fluid temperatures.

The system results in a relatively constant headrise requirement
on the pump because the system pressure drop should remain rela-
tively constant. Flow trimming problems experienced on parallel
flow systems are avoided with the series configuratien. One con-
cern with this design is the confirmation of the transitiomal
flow characteristics of a single panel. Although past radiator
designs have been based on a turbulent or laminar operation, the
Tug radiator was designed to operate through the transition re-
gion with Reynolds numbers ranging from 27,000 in the hot case

to 600 in the cold case.

Two advantages of the bypass radiator desipgn are the limited pres-
sure drop and reduction in heat transfer coefficient as the fluid

is cooled. The maximum pressure drop through the radiators occurs
at full flow when the fluid is at its high temperature and is re-

“duced as flow is bypassed around the panels.
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6.1

Ideally, the radiator designer desires high heat transfer coeffi-

cients at maximum heat load conditions and minimum coefficients

at minimum heat load conditions. This allows the total panel area
to be minimized while limiting the minimum fluid temperature. The
transitional flow design permits the designer to accomplish this.

This design assumes predictable operation over the above Reynolds
number range using data Colburn presented in 1936 (Ref 12). The
Transtage radiator was designed to operate down to Reynolds numbers

of 7000 however, the complete transition region was unot explored.
Successful Skylab Airlock Module radiator operation was demonstrated
up tc Reynolds numbers of 2500. A verification test of a single panel
is needed to confirm the design philosophy considered here. A

further discussion follows in ‘the cold case results discussion.

RADIATOR MODELING TECHNIQUES

A 79-node thermal model using variable material and fluid properties
to evaluate the system performance was developed. Heat transfer
coefficients were evaluated for each Individual radiator tube,
Classical heat exchanger theory was applied in evaluating the re-
generator performance. ‘ '

The tube heat transfer coefficients were obtained using the Colburn

. J-Factor method discussed in Reference 12. Figure 6-7 was ob-

tained from Reference 12, page 394, which relates the Celburn J-
Factor to Reynolds number. The Colburn J-Factor is related to the
heat transfer coefficient by the equation:

. .
_ e 2/3 0.14
J = (~-——-DCp 7 NP (uf/uw)

where

CP-= fluid specific heat

V¥ = fluid velocity in tube

p = bulk fluid density

Np = Prandtl Number

uf = bulklfluid viscosity

uw = fluid vis;osity at the ﬁube wall
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J = Colburn J-Factor

k = fluid conductivity

NR = Reynolds number

D = tube internal diameter

hc = heat transfer coefficient to tube

Solving for hC

_ 1/3 0.14
n, = Jk N N (uw/uf) /D
A subroutine with this equation was used in calculating the heat
transfer equation and applying it to the model. Inherent in the
subroutine was another technique used in evaluating radiator de-
signs at the Denver Division for several years. This technique
is directly adaptable to the finite differencing technique used
by most thermal analyzer programs. Consider fluid flowing through
a single tube and further consider this to be a part of a paral-
lel flow heat exchanger. '

The heat balance on the tube is governed by the following equations:
f 3 = . -
luid Q tw Cp (Tin Tout)

tube Q = ew C (Tw - T )
P in w

where

Q = heat rate

@ = mass flow rate

Cp = gpecific heat of the fluid

Tin = fluid inlet temperature

T = fluid outlet temperature
out

TW = tube wall temperature

heat exchanger effectiveness

m
It
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[1]

-—
]
——

solving for To

T =
out

ut

- +
(1-¢) Tin Tw

For a parallel flow heat exchange the effectiveness is

c .
~NTU (1 4 min )
e C

1 -
- max
. 1+c./c
min/ max
where
¢ =
P
C . = the minimum enthalpy flow
min
C = the maximum enthalpy flow
max
NTU = number of Beat exchanger units = h A/C
c mlin
If the tube wall were assumed to be a constant temperature, the
enthalpy flow outside the tube would approach infinity of Cmaxgggm
hence C , /C = 0. The above equation reduces to
min/ max
~h A/C_,
e =1-e ¢ min

Having

a

solved for T in terms of T, and T and determined £,
out in w

the finite difference equation was reviewed.

Ut

16, , T,
j-A i
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3]

where

TA = temperatﬁre of node A

Gj_A = conduétance from nede i to nodelA
Tj = femperature of node j

n =

number of nodes conducted to node A

The finite differencing equations would therefore solve for TOut

in the following manner:

- +
(1 £) Tin eTW

T - =
out 1 -+ ¢

‘which reduces to Equation [1].

The network for Equation [3] is:

Tin l-c¢ T
C) AR out
—_—
tse
-
w

The tube equation is satisfied by addiﬁg the additional conductor
to the metwork between Tin and Tw.

Hence the subroutine calculated the above network for each of the
16 radiator tubes, impressing the appropriate conductor values in
the thermal network each iteration. In addition, the Reynolds
numbers, Colburn J-Factors, and heat transfer coefficients were
saved for printout purposes.

6-13



6.2

To complete the radiator evaluation, the fin effectiveness was
evaluated by the following equation obtained from Reference 1l4.

p
where L
T
¢ T ®
TR = Fin root or rail root temperature r
g = Surface emissivity i | l_

k = Conductivity of the fin
§ = Fin thickness

L. = fin width

a Stefan-Boltzman constant

Solving for the root temperature in the model the fin heat radiated
is determined by

- Y
Q o AeuF TR

REGENERATOR SIZING

The regenerator was sized using the effectiveness approach described
in Reference 15. For a counter flow heat exchanger, the effective-
ness is defined as

1 - W (1-(: ./c )
min max

- (Cmin/bmax)e e (1 - Cmin/cmax)
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6.3

J

where

~ NTU = number of heat transfer units = UA/Cmin

C = w
P

C ., = minimum w C

min P

C = maximum w C

Max p
A = heat transfer area
U = gverall heat transfer coefficient

NTU was evaluated by assuming that on an individual iteration
basis the fuel cell fluid loop was at steady state. This agrees
with the use of arithmetic nodes to simulate the fluid. With that
assumption it follows that the heat dissipated by the fuel cell
must be transferred through the regenerator. Using the previous
iterations regenerator AT, the UA was calculated by the following
equation.

UA = Q/AT

NTU was derived from the above equation after determining the min~
imum of the hot and cold side w Cp values,

RADIATOR PRESSURE DROP

Radiator pressure drop was evaluated directly from the following -
equation which was obtained from References 12 and 16.

J=1/8
_or

f =8J
where

Colburn J-factor

Hh
i

friction facter

e e .. 6=15



6.4

Lp y2

AP = 8] 75

where

L = tube length

D = tube internal diameter
p = fluid density

Vv = average fluild velocity
gC = gravity term

Substituting the velocity with the continuity equation

_ar Lo fa)?
AP 8J D zgc (DA)

where

A internal tube cross sectional area

W

fluid mass flow rate

Pressure drops for tube bends were evaluated using the above equa-
tion modified for equivalent L/D ratios obtained from Reference
16.

FyLl CELL MODEL

The fuel cell was modelled and integrated with the radiator model.
The model schematic is shown in Figure 6-8.

Table 6-1 describes the nodes of the fuel cell model.

The conductor values used were tempegature—dependent based upon
FC-43 as the working fluid and were w CP one-way conductors. The

system mass flow was 5.75 kg/minute (12.67 1lb/minute). The use
of water in this loop would reduce the mass flow in proportion to
the specific heat ratio.
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Figure 6-8 Fuel Cell Model

Table 6-1 Fuel Cell Model Node Deseription

Node Description

200 Fuel Cell

201 Pump

202 Fluid Node .

203 Regenerator Inlet - Fluid

204 Regenerator Outlet - Fluid

205 Coolant Temperature Thermal Control Valve - Fluid

206 Bypags Fluid and Fast Warm-up Heater

207 Boundary Temperature

Heat

Q 200  Fuel cell heat dissipation function of electrical load
Figure 6-3

Q201 Pump heat dissipation - 30 watts constant.

6-17



The coolant temperature control valve was simulated by a linear
curve agsuming 100% flow through the regenerator at 356°K (181°F)
and 10% flow at 353°K (176°F) regenerator outlet temperatures.

The control range used was smaller than the 5.5°K (10°F) range
obtained from Pratt and Whitney. The range was reduced to pro-
vide better control of the fuel cell and was based on experience
with wax plug designs that tend to control in the range used.
Pratt and Whitney also stated that the design of the valve is such
that the minimum regenerator flow is 5 to 10% at the lower al-
lowable fludd temperatures.

Node 207 was used as a boundary node to remove heat from the fluid
using the regenerator equations and the following equations. The
effectiveness 1is related to the heat flow by

¢ = q/a =Ch (Th in ~ 'h out)
max Cmin (Th in ¢ in)
__¢ (Tc out ¢ in)
Cmin (Th in = ¢ in)
where
g = heat flow from hot to cold side
q = maximum heat flow for ¢ = 1
max
¢, = c, for the hot side fluid (fuel cell)
C. = CP for the cold side fluid (fuel cell heat rejection
system)
Cmin = minimum of Ch and Cc
T . = fluid hot side inlet
h in
T = fluid hot side outlet
h out
T = fluid cold side inlet
¢ in
T = fluid cold side outlet
c out

-solving-for q

g=¢C -

min (Th in c in)



6.5

. &)
Using arithmetic nodes to simulate the fluid implies that the
heat generated must be removed from the system because the nodes
are relaxed to steady state each iteration. The heat stored in
the fuel cell and pump, nodes 200 and 201, was not considered due
to expected small variations from one iteration to the next. The
sum of Q200 and Q201 was used along with an assumed 5.6°K (10°F)
temperature drop of the fuel cell fluid through the regenerator
to calculate the UA term thus enabling the effectiveness to be
calculated. Node 207 was set by the maximum temperature difference.

H

T T

207 = T204 = (Th in

T )
¢ 1n
or

T T

4

204 = {T203 = T34 )

where T34 was the cold side inlet temperature.

The above equation defining q was satisfied by substituting the
individual temperatures.

e C

a=eC o (Toos = T207)

=eC . (T204 - Togs T (Th in ~ o in))
hence
1= ¢ Cogn (Th 1~ T in)

FUEL CELL HEAT REJECTION SYSTEM MODELING

The control portion of the fuel cell heat rejection system fluid
loop was modelled as shown in Figure 6~9.

Table 6-2 presents a description of the nodes contained in Figure
-9. -
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Fuel Cell Heat Rejection System
Flow Control Loop Model

Table 6-2 Radiator Control Loop

Node Description
1 Radiator fluid inlet temperature
32 Radiator fluid outlet temperature
33 Thermal control valve outlet temperature
34 Regenerator inlet temperature
35 Regenerator outlet temperature
36 | Pump outlet temperature
37 Fluid temperature
208 Boundary temperature

Heat was applied to node 36 as Qp which was set at 51 watts. These

data were derived from a Block TI Apollo pump with Freon E-1 as
the working fluid, The conductor values were obtained using tem-—
perature varyving properties and represent the mass flow times spe—
cific heat. The pump flow was held constant at 1.8l kg/minute

(4 1b/minute). Node 208 was used to add the heat removed from

the fuel cell loop to the radiator loop and was evaluated by the
following equatien

Toos = T35 * {Th i

C in)

=T - T

35 * {T203 = T3s)

The conductor value between nodes 35 and 208 was set equal to e Cm,
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6.6

The radiator model is presented for a single panel. Each panel
was modelled individually and integrated into the complete model.
The first panel in the loop is shown in Figure 6-10.

460

QE = External Heating

Figure 6~10 Radiator 1 Nodal Diagram

"Nodes 1 through 9 and node 37 represent fluid nodes. Node 9 was

equivalent to node 1 on panel number 2 with the entire numbering
sequence contained, The series of nodes beginning with 41 were
tube wall nodes while the nodes beginning with 61 were rail root
nodes. Node 460 was the boundary node representing the space

sink temperature of 0°K. The fluid conductors between radiator
rails were w Cp values. The tube~to-rail root and rail root-to-

rail root conductors were handled as linear conductors. Q

E "€P~

resents the application absorbed external heating.

HOT-CASE PERFORMANCE

The hot-case analysis was performed to size the area of the ra-
diators and regenerator performance for the maximum external heat-
ing and maximum heat load condition. The results of the study
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resulted in the radiator being sized to 8.05 m? (22 ft2) or 2.01
m2 (5.5 ft?) per panel. The regenerator requirements derived from
the analysis indicated that an effectiveness of 0.90 or greater

was achievable. Table 6-3 presents the conditions used. As pre-
viously discussed, the maximum external environment was obtained
from flux case 4 in park orbit and was a transient environment.

The use of higher inclinatien angle orbits would require resizing
the radiator area for a constant solar exposure in near-earth orbit.

Table 6-3 Hot-Case Radiator Design Conditiona

Maximum External Heating Flux Case 4 Park Orbit
Vehicle Attitude Sun Normal to Tug Longitudinal Axis

Two Radiators Exposed to Sun 45°
from Sun Line

Maximum Electrical Load 1500 Watts
Maximum Heat Load 744 Watts Plus

81 Watts for Pumps

A radiator coating selection study was pursued where primary re-
quirements for screening were a low o/e, demonstrated stability
of the properties, ease of application, ease of maintenance, and
durability, White paints were eliminated by most of the above
considerations. Optical solar reflectors (0SR) were deleted due
to anticipated problems with handling and maintenance. 8Silver-
coated teflon tape was selected because of its fovorable optical
property values, stability, ease of application, and maintenance.
The properties used to represent silver Teflon. in .the analysis
were a = 0,09 and € = 0.76, obtained from Reference 17.

Figures 6-11 thru 6-13 present key temperatures of the fuel cell
loop, the regenerator inlet, regenerator outlet, and coolant tem-
perature control valve outlet temperatures, respectively. The
first temperature peak is due to the initial temperature in the
radiators being set at 355.4°K (180°F). Hence, the first half hour
of the simulation was used to gain control of the system. Most of
this time was used to allow the control valve to respond; the
valve was not allowed to change more than 0.5% of full flew from
one iteration to the next. This logic was to limit the valve
cycling. The same logic was also applied to the radiator locp
thermal contreol valve. The resultant regenerator inlet tempera-
ture was 359.73°K (187.75°F), as shown in Figure 6-11, while the
outlet of the regenerator was 344.54°K (160.5°F), as shown im
Figure 6-12. The 0.l~hour output interval accounts for the seem-
ingly jagged minor peaks in the curves indicating some minor cycl-
ing of the coolant control valve temperature at 353.7°K (177°F),
as shown in Figure 6-13. Hence, the system was controlled within
the desired temperature limits under maximum heating and load
conditions.
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Figures 6-14 thru 6-16 represent the fluid inler temperature to
the radiators, fluid outlet temperature from the radiators, and
the radiator loop thermal control valve outlet temperature, re-
spectively. Figure 6-16 also represents the regenerator cold side
inlet temperature and demonstrates control at the desired 333°K
(140°F). Figure 6-17 presents the regenerator cold side outlet
temperature. Figure 6-18 presents the heat rejected by the ra-
diator fluid loop and Figure 6-19 presents the net heat radiated
from the four radiator panels. The net heat rejected was evaluated
by summing the total heat radiated from the panels and subtracting
the summation of the absorbed heating rates. Figure 6-20 presents
the radiator fluid mass flow, which ranged from 1.772 to 1.322 kg/
minute (3.904 to 2.914 lb/minute). As shown the maximum system
flow was 1.814 kg/minute (4 1lb/minute. The maximum radiator flow
of 1.772 kg/minute provides a 2% margin in flow in the hot case
after the initial temperature transient.

Figure 6-21 presents the heat flow across the regenerator, which
averaged 809 watts (2763 Btu/hour). The fuel cell loop flow through
the regenerator, Figure 6-22, averaged 2.3l kg/minute (5.1 1b/
minute), while the system capability was 5.75 kg/minute (12.67 1b/
mirute) as recommended by Pratt and Whitney. Based upon these
results, the fuel cell loop flow could be reduced to 2.72 kg/minute
(6 1b/minute) with adequate margin maintained.

The Reynolds numbers, Colburn J-Factors, heat transfer coefficients,
and radiator pressure drop in the hot case were influenced by the
tube L/D chosen for cold-case performances. With an L/D of 200

the hot-case parameters varied as shown in Table 6-4.

The radiator fin effectiveness varied between 0.908 to 0.923 for
rail root temperatures of 354.2 to 330.2°K (177.8 to 134.6°F) at
the maximum flow condition and 0.909 to 0.929 for rail temperatures
of 352.3 to 320.8°K (174.5 to 117.7°F) at minimum flow conditiomns.

In reality, the hot~case electrical load on the fuel cell would
occur during a main engine burn, which would result in the vehicle
being oriented to the proper attitude before the burn. This re-
quired burn attitude would probably result in external heating
rates less than the hot-case environment, which would yield more
radiator performance margin than indicated. Further, the maximum
load would be a relatively short interval, on the order of 200

to 300 seconds.
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Table 6-4 Radiqtor Parameters

Reynolds Heat Transfer Pressure
Flow Numbers |J Coefficient Drop
kg/minute inlet/ inlet/ inlet/outlet
(1b/minute) |outlet outlet
watt/m? °K N/mZ
(Btu/hr-£t2-"F) | (psi)
1.772 27655/ 0.00400 (1117/946 1.75058 % 10°
(3.906) 20561 0.00407 (680/576) (25.39)
1.322 20444/ 0.00467/ |842/705 9.84364 x 10%
(2.914) 14553 0.00418 (512/429) (14.277)

"

COLD-CASE PERFORMANCE

The cold~case analysis was performed to verify that the radiator
system performance was adequate in a minimum external heating en-—
vironment with a minimum heat rejection requirement. For this
case the heat load was reduced to 281 watts from the fuel cell,
which results from a 600 watt electrical load. The external en-
vironment was reduced to no external heating being applied to the
radiators, which would result from the vehicle longitudinal axis
aligned to look at the sun.

The predicted radiator performance indicated that this environment
could be flown under minimum heat load conditions without experi-
encing excessively cold fluid temperatures. The radiator flow
was controlled at 12% of full flow.

Figures 6-23, 6-24, and 6-25 present the major fuel cell fluid
temperatures, Figures 6-23 and 6-24 present the fluid inlet and
outlet temperatures for the fuel cell side of the regenerator.
Figure 6-25 presents the coolant temperature control valve outlet
temperature. As discussed in the hot case, the high flow in this
loop and the restricted response of the coolant temperature control
valve resulted in the negative peak in f£luid temperatures. The
inlet to the fuel cell was maintained at 352.8°K (175.3°F).
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The radiator inlet temperature showed a similar negative peak with
a resultant temperature of 344.3°K (160°F), Figure 6-26. Of major
interest in this run was the radiator outlet fluid temperature,

as shown in Figure 6-27, which leveled out at 227.6°K (-50°). For
the chogen fluid in the radiator loop, Freon E-1, this temperature
is well above the freezing temperature of 119°K (-246°F). Figure
6-28 pregents the radiator thermal -control valve outlet tempera-
ture and shows that control was achieved as desired at just under
333°K (140°F). The negative peak shown in the figure also resulted
from restricting the valve response. This figure also corresponds
to the regenerator cold side inlet temperature. Figure 6-29 shows
the regenerator outlet temperature was maintained at 343°K (158°F).

Figures 6-30 and 6-31 present the heat rejected from the radiator
loop fluid and by radiation from the radiators., Tigure 6-32 pre-
sents the radiator mass flow with control maintained at 0.215 kg/
minute (0.474 1lb/minute), which represents 12% of full flow.

Figure 6-33 presents the heat flow across the regenerator and Fig-
ure 6-34 presents the fuel cell mass flow through the regenerator.

The flow through the radiators resulted in Reynolds Numbers ranging
from 2554 at the inlet to 589 at the outlet. This represents flow
in the lower end of the transition region to fully developed laminar
flow. The Colburn J-Factors derived from Figure 6-7 ranged from
0.0024 at the inlet te 0.0084 at the outlet, with the minimum of
0.0021 achieved in the fourth tube of the first panel. Correspond-
ingly the heat transfer coefficients ranged from 238 gi%gfy—zﬁ (42

Btu/hr—ft?-°F) at the inlet to 324 ——g—-—watts s> (57 Btu/hr-ft?-°F) at
. meter K :

. ) G watts
the outlet. The minimum coefficient, 173 ———=—= (30.5 Btu/
. meter K
hr~f;2—°F) was in the fourth tube. The pressure drop through the
radiators was 2096 N/m2 (0.304 psi}). The low pressure drop 11-
lustrates one of the desirable features of the bypassed radiator
design, which allows low pressure drops in the radiator loop dur-
ing cold fluid conditions while achieving essentially a constant
pressure drop in the pump loop. '

The transitional {flow through the radiators permits the fluid to
be decoupled slightly from the radiators, thus-allowing warmer
fluid temperatures and higher flow rates to be maintained. The
Colburn J-Factor approach to radiator design has not been pursued
to any great extent by the industry except on the Transtage ra-
diators, which have experienced seven successful flights. The
Transtage design did not, however, require the full transition
region to satisfy the design requirements operating down to Reynolds
numbers of 7000. The Airlock Module radiator on Skylab was suc-
cessfully and predictably operated at Reynolds numbers up to 2500.
Hence, before pursuing the radiator design further, it would be
desirable to conduct some breadboard level testing on a four-tube
panel to explore and verify the heat transfer and pressure drop
characteristics through the transition region.
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SPECIFICATIONS

Design and performance parameters of the fuel cell heat rejection
system are documented in the form of a specification and are pre~
sented in Appendix I.
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7.1

FURTHER CONSIDERATIONS ‘ '

The Tug design confronts the state of the art in several areas.
Inherent in the Tug mission is the goal of maximizing the payload
delivery and retrieval capability. This has resulted in signifi-
cant minimum weight requirements being placed on all systems. When
designing the structural system, structural designers have been
forced to explore the extensive use of composite structural de-~
signs aimed at a minimizing weight.

HONEYCOMB STRUCTURES

A honeycomb design for the forward skirt of Tug, for example, has
been proposed by most investigators. While this appears te pro-
vide a minimum weight design, further tradeoffs are necessary be-
fore arriving at the preferred baseline. The past use of the
aluminum skin stringer-longeron design, while being potentially
heavier than the honeycomb design, has afforded the thermal de-
signer a significant amount of flexibility. Use of the skin as

a radiation skink for compartment hedat dissipation was a simple
and reliable means of achieving thermal control. However, the
application of honeycomb designs in this area adds an unknown to
the problem, and in some cases would result in significant thermal
design problems.

Heat transfer through thin aluminum skin panels results in small
temperature drops (<<1°K) and is usually considered to be zero.

The honeycomb material represents two surfaces separated by a core
material through which heat must be transferred. Depending on

the core material and the bondline characteristics, large tem-
perature drops can result when transferring the required heat. The
use of high conductivity materials such as aluminum is required
because the major mode of heat transfer through the honeycomb Is
via conduction. The use of fiberglass or cother low conductivity
materials would severely impact the internal compartmental tem-
perature in the hot case and would require large holes in the

skirt to allow heat to be dissipated in local areas. To achieve
the required strength characteristics such a design would probably
eliminate the weight advantages gained. Continued development of
lightweight skirt structural comncepts should include an evaluation
of the thermal design impact that each concept might yield. Omne
of the key requirements in a supporting thermal evaluation would
be to determine experimentally the thermal characteristics of each:
candidate concept.
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7.2

APS THERMAL DESIGN

The thermal design of the auxiliary propulsion system (APS) was
not specifically investigated in this study. However, experience
in the design and flight of the Transtage hydrazine attitude con-
trol system provides several guidelines. The selection of a hy-
drazine system for Tug will simplify the thermal design problem
and will make it an Integral part of limit cycling requirements

of the system. The thruster module thermal design is the primary
concern. Depending on the individual thruster design, heat is
required to maintain the catalyst temperature at some minimum level
to ensure that the desired minimum impulse can be delivered upon
demand. The Transtage system used engine heat to maintain the
catalyst bed temperatures above 450°K (350°F). Normal limit cyel-
ing of the engines required by the guidance system to maintain

the required vehicle attitudes was sufficient to supply the major
portion of required heat. Computer software was added to account
for the fuel consumption over 10-minute periods, comparing that
against predicted cold-case fuel consumption requirements. Short-
age of the required cold-case fuel consumption in any l0-minute
flight interval resulted in a burn of the required thruster to
make up the difference. Hence, the design used the propellant
consumpt ion instead of heaters to satisfy module thermal design
requirements. Further, definition of the Tug module and engine
design will be required before a thermal design can be determined.
Local application of high temperature fiberous insulation will be
required.

The APS propellant storage and feed system will require insulation
and thermostatically controlled heaters to eliminate propellant
freezing. This should not represent a significant problem. In
addition, the application of low conductance tank and feedline
supports will be required.
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THERMAL CONTROL SYSTEM SPECIFICATIONS AND DESTGNS
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Thermal control system specifications were developed for those
problem areas that required the application of specific thermal
control devices. It was not considered necessary to develeop a
specification for the use of insulation and/or heaters. The spec-—
ifications are presented in the Appendixes to this report.

The fuel cell heat rejection system specification (Appendix I) out-
lines the basic system's thermal design requirements. Appendix

IT presents the louver specification for application to the thermal
control of the battery.

Appendix II1 presents the specification for development of the
forward compartment thermal design using circumferential heat pipes,’
louvers, and thermal conditioning panels. The panels will provide
a means to control those equipment items with low duty cyeles,

such as the laser radar, its associated electronics, and the TV
cameras. Mounting these equipment items with other equipment which
operate throughout the mission will allow components to share

heat, thus reducing heat power requirements. This also provides
structural panels for mounting the equipment. The heat pipes avoid
excessively high or -low skin temperature during constant attitudes
and further enable heat to be shared between the thermal condition-
ing panels. '
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9.2

FOLLOW-ON PLAN

Several areas were identified for future study and test to lead

to an orderly development of the Tug vehicle. In a study of this
nature as many questions are identified as are answered during ;
the course of the study.

STUDY AREAS

As the avionics system evolves in the future, the power dissipation
level is expected te change. This will require altering the paint
pattern and possibly revising heater power for some components.
Component placement and arrangement studies on the thermal con-
ditioning louver panels is warranted to further develop this tech-
niques. Parametric studies investigating panel Q/A, equipment

Q/A, component arrangement, matching of qualification requirements,
proper mix of high and low duty cycle, and environment temperature
ranges should be pursued to .identify the capabilities and limita-
tions of this concept. The APS thermal control will require scme
future investigations as that system evolves. The use of heater
power to maintain the catalyst temperatufe.may be required; how-
ever, the limit cycle pulsing of that system will contribute sig-
nificantly to maintaining the desired temperatures. ‘Early identi-
fication of timelines will be essential to develop the engine mod-
ule thermal design.

TESTING

Breadboard testing in several areas of 'the Tug thermal design is
warranted at this time. Two areas.will be explored in the follow-
on to this contract. The application of louvers to the thermal
control of the battery is currently being examined along with the
performance of a thermal conditioning panel that will be coupled
with a heat pipe radiator. Thermal conditioning panel capabilities
will be further demonstrated. The design of a variable conductance
heat pipe radiator will be verified. The successful demonstration
of the radiator design will lend confidence in the credibility of
heat pipe svstems to satisfy the fuel cell heat rejection system
requirements.
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The pumped fluid system described here deserves further attentiom.
The proposed design requires some breadboard-level testing to veri-
fy the radiator's operation through the tramsition region. This
testing will verify the techniques used in the analytical models
for design and mission analysis.

Testing s‘hou]*.d also be performed to determine the effective thermal
conductance through honeycomb skin panels. The major unknown is
the influence of the two bondlines on the overall conductance.

The data generated in the study indicate that the forward compart-
ment thermal design is sensitive to this conductance. This could
have a severe impact on the compartment design concept.

The forward compartment heat pipes were envisioned as single closed
circular pipes. Current technology in heat pipes has generally
been limited to relatively short pipes. One 4.6-m-diameter pipe
has been built and tested (Ref 18). Continued development in this
area is warranted,
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10.

CONCLUSTONS

The analysis has shown that thermal control of Tug, exclusive of
the fuel cell, can be maintained through the use of surface coat-
ings, heat pipes, insulation, and louvers. Components can be
maintained within their temperature limits by using isolatiom
mounts, surface coatings, multilaver insulation, and in some
cases thermostatically controlled heaters. A second component
thermal control approach using thermal conditioning panels was
also investigated, which reduced the required heater power. Both
hot and cold environments for a simulated Tug mission were used
to analyze the thermal control techmniques. The analysis was per-
formed for no orientation constraints during the Tug mission, thus
providing flexibility in satisfying future payload requirements.

The transient analysis of the forward compartment used a paint
pattern (0o/e = 0.5) derived from the steady-state parametric
studies using 800 watts of internal power. However, initial
transient analyses resulted in both hot and cold problems, with

a high power (187 watts) tape recorder which had a narrow operat-
ing range of 289°K to 314°K (60°F to 105°F). A tape recorder that
dissipated 8.4 watts was substituted. With the new power level

for the tape recorder, the actual average power dissipation for

the forward compartment was reduced to approximately 600 watts.
Based upon this power level a new value of /e = 0.60 is necessary
to maintain the temperature level of the forward compartment at
297°K (75°F). This would replace the original a/e = 0.2375/0.475 =
0.50. An o/e of 0.6 is obtainable using an o of 0.24 and ¢ = 0.40.
This results in a paint pattern ratic of aluminum to white equal

to 75% to 253%.

In addition to the high-power tape recorder that was subsequently
replaced with a tape recorder of moderate power, other components
were marginally acceptable in regaxds to their temperature limits.
These include the laser radars and the laser radar electronics.
These components have a very high lower temperature limit In both
the operational and storage phases of the mission (operational
minimum = "293°K (68°F), maximum = 323°K (122°F); storage minimum =
288.7°K (60°F), maximum = 323°K (122 K)). A large amount of heater
power is required to maintain their temperatures, even in the hot
case. Heater power for these components for the hot case included
84 watts for each of the laser radars and 65 watts for each of
these four components while the rest of the components require
less than 5 watts for this case. This indicates that these par-
ticular components should be requalified to temperatures more in
line with the rest of the forward compartment components or ad-
ditional thermal design features incorporated into individual
components,
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Many components exceeded their lower temperature limits in the
cold~case simulation. However, this simulation used sn unusually
cold environment. This environment occurs only if the Tug longi-
tudinal axis is maintained parallel to the solar vector and there
is no significant planetary or albedo flux (i.e., Tug iIn a geo-
synchronous orbit). All of these component problems could be
solved with additional heater power, further component isolation,
and altering paint patterns. However, this reduces the flexibility
of the design by making the component temperatures approach their
upper limit in a hot case.

An alternative to the complex task of optimizing the isolation

and heater power of each component is a new component mounting
concept. In this concept, by grouping individual components with
regard to electrical power output duty cycle and temperature limits
on thermal conditioming panels, a reduction in heater power re-
quirements in both hot and cold conditions can be obtained.

The thermal conditioning panels (see Appendix III) are mounting
panels containing integral heat pipes and provide a means of obtain-
ing an isothermal condition. Components are hard mounted to one side
of the panel with a louver system on the other. The louvered

side faces the compartment wall, which is maintained at a uniform
temperature by circumferential heat pipes. The panel temperature

ig primarily controlled by the modulation of the temperature-sen-
sitive louver blades. This concept offers a passive means of
component control by allowing excess electrical power generation

to be shared in maintaining other nonoperating components on the
panel above their lower temperature limit.
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SYSTEM DESCRIPTICN

The Space Tug fuel cell heat.rejection system provides the means of maintaining
the primary electrical power system, the fuel cell, within the desired operating
temperature range during thg tug miésion. The fuel cell is activated in flight with
power transfer occurring at T + 3.877 hours, and provides demand electrical power
until T + 97.634 houré when power transfer to battery occurs.

During the mission the fuel pell rejects heat per Figure ! and generateé the
byproduct water in the form of steam per Figure 2. Figure 3 is a simplified flow
schematic of phe fuel cell., Two major interfaces for the fuel cell heat rejection
system are the internal fluid loop with the regenerator and the bypréduct steam with
the vent system. |

The heat rejection system is_cqmprised of the necessary plumbing and fittings,

a redundant set of pumps, accumulators, thermal control.valves; and éoﬁtrollers. The
interface is accomplished with a single regenerator thch has redundant secondary
fluid loops. The 4 radiators are located in each quadrant around the intertank com-
partment with redundant fluid lines. Figures 4 through 6 schematically present the
system. |

The fuel cell fluid loop uses water ot FC-40 Freon fer a working fluid. The
radiator system use E-1 Freon as the working fluid.

The fuel cell'sysfem is designed for a AT through the stack of 5.560K (IODF)
at electrical load of 1500 watts, This results in a heat rejection of 744.22 watts
(2540 Btu/Hr). ‘The coolant pump adds an additioﬁal 30 watts te the system. The
coolant -temperature qon:rol valve controls the stack inlet temperature within a
nominal operating temperature range 349.67 to 355.2 K (1706F to 1800F). The minimem

flow to the regenerator at the lower temperature is 5 to 10% of full flow.
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FIGURE 1 = WASTE HEAT REJECTION
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RADIATORS
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DETAIL A
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The radiator system is a series - serles-bypass flow system which has the

radiators in series with flow through each radiator in series. The radiators
are bypassed dependent upon the load by the thermal control valve which maintains a
near constant fluid temperéture te the regenerator of_3330K (1400Fl

Micrometeorite protection is provided by using a redundant fluid loop and a
P-tube rail concept as shown in Figure 6. |

The regeﬁerator, accumulators, pumps, thermal control wvalves, controlé,_and
instrumentation will be packaged within a box designated as the Thermal Control
Unit (TCU) as shown in Figure 5. The ‘TCU and the Fuel Cell will be isolated from

the inter-tank compartment by thermal washers and multi-layer insulation.
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M

SYSTEM REQUIREMENTS AND PERFORMANCE SPECIFICATIONS

1.

2. The heat load range shall vary per Figure 1l with the 600 to 1500. The
heat load is increased by 30 watts to account for the fuel cell pump haat
dissipation.
Radiator System Requirements:
1. The system shall meet all fuel cell thermal requirements.
2. The system shall operate in earth orbit from 296 to 35750 kilometers (160 to
. 19300 nautical miles) with no attitude constraints for an inclinmation of 28.5°.
3. The radiators shall provide miérometeorite protection for the fluid 1ines.
4. The fluid system shall have a redundant loop,
5. The regenerator inlet temperature shall be maintained at 333 °K (140 °F) + TBD.
6. Regenerator flow shall be maintained at 1.814 kilograms/minute (4 1bm/minute).
7. The working fluid shall be Freon E-1.
8. The regenerator (counter flow heat exchanger) shall exhibit a minimum effect-
iveness of .900. The effectiveness (Eff) shall be defined as
N e-NTU a - Cminfcmax)
Eff = C s -
1 - EEEE ) e NTU (1 - Cmin/cmax)
max
where:
C = WG W = mass flow rate
cmin =  minimum enthalpy flow C, = specific heat of fluid at constant
: pressure
C =  maximum enthalpy flow
max
NTU = number of heat exchanger units
- DA
qnin
size CODE IDENT. N,
A 08236
cha -
SCALE rASE 19 sHERT
S

Fuel Cell Requirements:

Maintain the fuel cell radiant to the stack within the design operating
temparaturxe range of

352.6 to 355.2 °K (175 to 180°F) over the required heat load range.

I-10
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U overall heat exchanger conductance .

A

il

heat exchanger srea

The radiators shall be sized to disgipate the maximum héat loéd‘

minimum altitude and maximum external absorbed heating.

The fluid shall not be permitted to freeze 119°k (-2460F) or rgach highly
viscous.state.. |

The cold case shall be défined as thg minimum heat load with no external
flux on the radiators.

Radiator coating shail exhibit stable thermal properties.

Radiator shall be sized assuming an'adabatic_vehiqle side.

Either fluid loop shall be capable of carrying the heat load to be dissipated.
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A 04236
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Predicted System Performance

Hot Case

Conditicns:

1,

Fixed attitude with respect to the sun. WNormal sun to longitudinal axis

with sun angle to center of 2 radiator panels of 45 degrees,

2. Attitude 296 kilometers (160 nautical miles).

3. B=52° orbit.

4, Maximum electrical load 1500 watts.

5. Maximum heat dissipation is 744 watts plus Bl watts PUump power.
Performance

See Figures 7 thru 10.
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Cold Case

Conditions:

l. Fixed attitude with respect to the sun (parallel to longitudinal axis}.

2. Altitude 35750 kilometgrs (19300 nautical miles).

3. Minimum electrical leoad 600 watts.

4. Minimum heat load is 281 watts plus 81 watts pump power.

Performance See Figures 11 thru 14,

Performance is based upon a transitional flow design where the filuid heat transfer
is based upon the Colburn J-Factor analogy per Figure 15. The fluid heat
transfer coefficient is related to the J-Factor by the equation

- 1/3 14
h, = J k N, Ny u S /D

J = Colburn J Factor
k =  Fluid Conductivity
NR, = Reynolds Number
NP = Prandtl Number
Moy = Fluid Viscosity at the Tube Wall Temperature
. = Fluid viscosity at the Average Fluid Temperature
D = Tube Internal Diameter

Performance is based upon an L/D per straight tube of 200.
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Colburn J-Factor vs Reynolds Number
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QUANTITY Thermal Control Unit
2 PUMP - Flow 1.59 to 2.04 KG/min. (3.5 to 4.5 ibs/min)
' N ¢

1 REGENERATOR - Redundant cold side loops approximately 1.379 x 105
Newtons/meter? (20 psi) pressure drop at 1.81 KG/min
(4 1bm/min) flow/loop. Hot side loop pressure drop TBD.

2 ACCUMULATOR - Volume TBD. Pressure &% 3.447 x 10° Newton/meter-
(50 Psi). ’

4 DISCONNECTS - Primary and secondary loops 2 each. Line size TBD.
Pressure Drop < 6.89 x 103 Newtons/meterZ (1 psi).

2 THERMAL CONTROL VALVE - Maintain regenerator inlet temperature
at 3339K (140°F) by mixing radiator return fluld with pump
outlet fluid. Flow range O to 2.04 KG/minute

0 to 4.5 lbs/min.
Pressure drop TBD,
2 FILL DISCONNECT - System fill gnd draln Zero leakage after dis- .
connect. Size - TBD. .
10 PRESSURE TRANSDUCERS - Range 0 - 6.895 x 105 Newtons/meter2
{0 - 100 Psia)
Accuracy 1% of full scale.
6 TEMPERATURE SENSQORS "o .
Range 172 to 394°K (-150 to +250°F).
Accuracy 1% of full scale,
2. FLOW MEASUREMENT ~ Range 0 - 2.04 kilograms/minute
: (0 - 4.5 pounds/minute)
Accuracy 1% of full scale.
Radiators

4 Each panel with 4 integral ralls,mlnlmum fin efficiency = .9,

P - tubes welded to rails per Figure 6 s1ngle tube L/D = 200
Size:

Length ) Width

91.44 cm ' 55.88 cm

. (36 inches)2 (22 1nches)

Area .511 meters (5.5 feet )
Panel thickness 0.0762 cm (0.030 inches).
Tube ID 0.4572 em (0.18 inches).

»ize CODE IBENT MO

e,

HARDWARE LIST & DESCRIPTION

Eed9D{1250)



11

12

10

16

CHNG

ALUMINUM TUBING - Length as required: OD - .9525 M (375 inches) g
ID - TBD
DISCONNECTS = Line size .9525 M (,375 inches)
Pressure Drop € 6.89 Newtons/meter
(1 Psi)
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SYSTEM DESCRIPTION

fThe quver“sysﬁeﬁ provides thermal control to the fuel cell primary
battery which will be used when the fuel cell is déactivated at T + 97.634
hours. Tﬁe battery will also function as an emergency backup power supply
unit in the event of fuel cell failure. The battery is designed to provide
450 watts of electrical ﬁower for a time period of 0.5 hours. Based on-the
bpwer output and & 90% efficiency of-the'battery, 45 watts.of thermal energy'will

be generated within the battery.

The louver systeﬁ will dissipate the 45 watés of thgrmal energy and main-
tain the battery operational temperature below tﬁe allowablé limit'tempera-

ture of 305.3°K (90°Fﬁ‘fom the'fequifed 0.5 hours of operation. The louver
system will also add in controlling the non-operational teﬁperature above
288.7°K (60°F).

.The loﬁver thermal control'syétem consists of a component mounting bage-‘
plate attached to a-set of mOVeable‘aluminqm louyer blades by 1§w conductance
screws, Thg blades are augomatically actuated by teﬁperatufe sen#itive
bimetallic spiral wouﬁd springs radiatively coupled to the baseplate. Tﬁe
baseplate. and louver blades are housed in a éonductively isolated frame which
is mounted on the interior side of the tug skin using minimum conductance
fastene;s._ The louver assembly‘and mounting configuration are shown in

Figufe‘l.
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IS

A thermal model éf the louver systewm shown in Figure 1 was constructed for
the MITAS tﬁermal analyzer (Reference 1). The model was necessary because steady
state, worst condition amalysis tended to over design the system. The model
accounts for the thermal characteristics of bofh the louver system and the emer-
gency battery. A GFP absorbed heating enviroﬁmeng was simulated in the model and
is shown in Figure 2. This environment was calculated assuming an @2/ € of the
external skin equal te .2/.9. The thermal capacitance of the battery, baseplate
and external skin along with a time line to adequately account for the battery
power generation 'is included. Conduction through the multi-layer insulation and
through the louver system standoffs is included as well‘as thé éontact resistance
between the battery and the baseplate.

The louver system parameters used ;n the model correspond to é commercially
avallable bimetallic actuated louver system (Reference 2). The blade angle is

\ .

determined by the baseplate temperature (2890K (GOOF) blades rclosed, 3030K (SSDFl
blades fuily open). The effective ewmittance is then determined by the blade angle
as shown in Table 1. The louvered area consists of 0.165 sq. m (1.78 sq. ftr.)
which was also used for the area of the baseplate and the external skin, The base-
plate was assumed to be 0,32 CM (1/8 in.) thipk aluminum and the external skin was

assumed to be 0.25 CM (0.10 in.) thick aluminum. The emergency battery simulated

was taken from the tug data bank (Reference 3) and had a thermal mass of 1.79

watt-hrs/°K {3.39 btu/°F). Also a 10 watt, thermostatically controlled, heater

was Iincorporated in the battery to maintain temperature limits in the non-operating

condition.
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System Regﬁireménts and Performance Sgecificatioﬁs

1. “Maintain primary battery temperature bélow 305.4°K (QODF) for 0.5 ﬁdurs
of operation. |

2,  P£ovide.ﬁé;ns Sf.dissipating 45lwatts 6f therm;i energyrwhiie béété;y ig
operating.

3. 7C6ntrol non-operational battery temperatures above 288.7°K (BOOF).

‘4. Provide contrpl of blade position as a function of baseplate temperature,

288.7°k (GOOF) blédes closed, 303.0% (BSOF) blade open.
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Predicted System Performance

Twe cases were simulated using the previously described math model and the
absorbed environment shown in Figure 2. 1In both cases the initial temperatures
were started at 294.40K (700F) and the problem was simulated for 5 orbits
approximately 8 hours corresponding to the heating rate in Figure 2. 1In the
middle of the third orbit (approximately 4 hours) the battery was activated for
0.5 hours. The two cases differ in that the second case uses only ld percent of
the absorbed heating rate shown 1in Figure 2. This case demonstrates the adequacy
of the 10 watt heater to maintain temperature control. The results of the first
case are shown in Figures 3 through 7. The results of the second case are shown

in Figure 8 through 12.
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+ TABLE 1 - EFFECTIVE ,_EMITTANCEE FOR COVERED LOUVER SYSTEM

BLADE EFFECTIVE
ANGLE EMI T_IANCE
DEG '
90 0.818
(Full Open)
75 0.79%0
60 0.742
45 0.660
30 0.543
15 0.379
0 0.035
{(Full Closed)

{for a covered louver system assuming a diffuse wall

‘and a diffuse baseplate €¢ = 0,9)
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Hardware List & Description

Item Quantity

1 1 Louver frame and blade assembly - minimum covered area of
0.17 M2 (1.78 ftz). Complete with temperature sensitive
bimetallic actuators. Blades are specular and have an G'S 0.5.

2 1 Component mounting baseplate - 0.318 cm (0.125 in.) thick
aluminum plate with a minimum surface area of 0.49 M2 (5.30
£e2y.

3 1 Miltilayer insulation blanket - 20 alternate layers of perfor-
ated aluminized mylar and tissue glass.

4 1 Interior thermal control coatings - radiatiqg surface of
component baseplate and interior of louver cbver/skin, painted
with a high emittance (€ 2 0.9) diffuse coating.

5 1 Extevior thermal control coatings - a minimum area of 0.17 M?
(1.78 ft2) of the external cover/skin should be covered with
second surface mirrors.

6 TBD Mounting paﬁel thermal isolators-low conductance screws,

washers, standoffs, etc. for the purpose of mounting the

louver assembly to the cover/skin.
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thus simplifying the component thermal design problems as well as heater power

SYSTEM DESCRIPTION

Thé tug forward compértmeﬁt is designed thermally to operate over a range
of worst case environments which include a fixed attitude with respect teo
the sun in near earth orbit and a zero heating attitude at geosynchrous attitude.
The design incorporates several thermal devices whose purposes is to provide

temperature control of the avionics components.

The basic concépt is to mount the components on thermal conditioning panels
which are mounted to the structure with louver assemblies attached to the skin
side of panels as shown in figure 1. Heat pipes are mounted on the interior i
surface of the honeycomb skin to provide a relatively uniform teaperature‘;round
the forward skirt.

The thermal conditioning panels are honeycomb panels with integral heat r
pipes. The panels are designed to permit two-dimensional heat flow, thus
approaching an isothermal plate concept. Mounting of high and low duty cycle
components on each panel permits distribution of heat between components thus
reducing if not eliminating the need of component heaters. The skin side
louvers provide the means to redu€e radiation losses from the pamnel as the panel

-

temperature hegins to drop in celd environments by clgsing the blades. This

permits the panel temperature to be passively controlled to a relativeiy narrow range

requirements.
The heat pipes on the intermal surface of the skin act to isothermalize
the skin dependent upon the external and internal heating on the skin. Heat

is transferred from the hot side of the vehicle to the cold side thus providing
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a more uniform environment for the panels and the components.

System Requirements and Performance Specifications

The primary purpose of this system is to maintain the tug avionics com-
ponents within acceptable temperature limits during the tug mission. To
achieve this objective each of the major elements shall meet the fellowing

requirements.

. Thermal Conditioning Panel

Non-Operating Temperature Range

Operating Temperature Range

Maximum Component Heat Load

Maximum Gradient Across Panel BSurface
Maximum Thermal Load Density

Size As Required
Bolt Pattern

Panel Mass

Maximum Component Mass

255 to 367°K
0 to 200°F

272 to 311%K
30°F to 100CF

300 Watts

2.77%K
50F

.31 Watts/Cm?

2 Watts/in?

.1 x .1 Meters
4 x 4 inches
< 13.8 KG/m?

45.4 KG
100 Pounds

[TF-4.4 CODE IDENT NO.
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Size

Weight

Blade Operating Temp. Range
End Point Adjustment

Blade Emissivity
Temperature Survivability

Effective Emissivity of
Baseplate

Number/Spacing
Length 14.77M,
Diameter 1.27 M,

Non-coperating Temperature Range

Operating Temperature Range

Beat Flux Capability
at 300°k (80°F)
Evaporator to Condenser
. o o
Maximum AT at 300 K (80 F)

Heat Transport Capability

LOUVERS

40,64 x 20.32 x 4.9 M
(16 x & x 1.93 inches)

.27 KG .6 Pounds

288.7 to 302.6°K (closed to open)
(60 to 85°F)
+5, 69K (+10°F)

<o.1

199.8 to 394.3°K
(-100 to 2509F)

Open .8

2
Closed < .1

SKIN HEAT PIPES

6 Pipes One Every 5 Inches in Longitudinal Direction
(45.03 ft.) Circumferential

(0.5 in.) (Nominal)

144 to 3660g
-200 to 200°F

172 to 311%
-150 to 100°F

60 Watts/M Per Pipe
(19.7 Watts/Ft} Per Pipe
<5.6°K

(10°F)

TBD
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PREDICTED PERFORMANCE
Mbunting panel heat'fluxes are given in Figures 2 and 3 for hot and cold
Eonditions respectively. These curves weré generated from the following
equation:
Q/A = O'éff (sz* - Tsé’) + o“ép (Tp4 - re“)
‘where '
Q/A = Panel Net Heat Transfer
o = Stefan-Boltzmann Constant
-eeff = Louver System Effective Emissivity
Tp = Mounting Panel Temperature
TS = Skin Tgmperature
Te = Interior Environmental Temperature
ep =  Emissivity of Mounting Panel
siza CODK IDENT NO.
A 0%236
che "
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HARDWARE LIST

6 - Circumferential Heat Pipes and Mounting Brackets
5 to 6 Thermal Conditioning Panels - Number and Size Dependent Upon Component
Groupings

Thermal Control Louver Assemblies One for FEach Thermal Conditioning Panel
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